

A SERVICE ORIENTED ARCHITECTURE FOR DATA-DRIVEN DECISION SUPPORT SYSTEMS

By

Ian James Cottingham

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Matthew Dwyer

Lincoln, Nebraska

July 2009

A SERVICE ORIENTED ARCHITECTURE FOR DATA-DRIVEN DECISION SUPPORT SYSTEMS

Ian James Cottingham, M.S.

University of Nebraska, 2009

Advisor: Matthew Dwyer

 Decision support is a complex activity requiring high-availability of many, seemingly unrelated,

data sources. Creating software systems to support decision making activities across multiple domains

poses significant challenges in terms of high-availability of data and the interoperability of both data and

software components. These data integration challenge are magnified when one considers that in many

domains, data must be analyzed both spatially and temporally in order to provide effective decision

support. The complexities of data integration in Decision Support Systems can be addressed by providing

software operations exposed at data integration points. With data integration points exposed through a

unified service framework, data of many formats, resolutions, and sources can be much more easily

integrated through layering software component operations within the framework.

 By developing to a unified framework specification for the integration of domain datasets,

software engineers can create components to encapsulate data operations published as services within

the framework. Common data type descriptors and operations provided by the framework can be utilized

in the component development to ensure that, once published, framework components can interact in

standard ways. The standard interaction of data-driven components results in the implicit integration of

domain datasets; data integration becomes a function of component development. The framework

architecture provides for highly cohesive and loosely couple components and preventing integration from

coming at the expense of existing component functionality.

 This thesis presents The Framework for Integrated Risk Management (FIRM), a unified

framework to support data-driven decision support in agricultural domain through data integration and

service publication.

ACKNOWLEDGEMENTS

 This work was made possible through a cooperative agreement between The University of

Nebraska - Lincoln and the United States Department of Agriculture Risk Management Agency
1
. Untold

hours of software development went into the implementation of the architecture presented here.

Without the combined efforts of one of the most dedicated software development teams that I have

been privileged to lead, this implementation would not have been possible. Special thanks go to the

members of that team: Shawn Baden, Jon Dokulil, Flora Jiang, Brian Knapp, Ben Kutsch, Laura Meerkatz,

Debolina Ray, Derrick Stolee, Jesse Whidden, and Xueming Wu. Additional thanks go to Doctors Matthew

Dwyer and Steve Goddard who advised on aspects of this research, as well as the faculty and staff of the

National Drought Mitigation Center who provided domain expertise critical to understanding the complex

processes encapsulated by this framework.

1 Drought Risk, Impact and Mitigation Information System (USDA 05-IE-0831-0254)

This work is dedicated to my mentor and friend, Ed Smierciak, who, through many long hours of writing

code together at IBM, inspired me to love the art of good software design.

CONTENTS

Chapter 1: Introduction ... 1

Motivation... 1

Approach ... 4

Outline .. 5

Chapter 2: Background and Related Work .. 7

The 3Co Framework .. 7

Service Oriented Architecture ... 8

Java EE 5 .. 9

JBoss Application Server and Frameworks .. 10

Chapter 3: Framework Architecture .. 12

Centralized Management Framework .. 15

Core Integration Services .. 23

Integration Component Runtime .. 32

Framework Instance.. 36

Chapter 4: Framework Data Model ... 38

Climate Data Model .. 39

Persistent Data Model .. 40

Transient Data Model ... 45

Drought Data Model ... 56

Persistent Data Model .. 57

Transient Data Model ... 62

Geographic Data Model .. 66

Persistent Data Model .. 66

Transient Data Model ... 70

Connector Architecture... 71

Chapter 5: Framework Component Model ... 73

Climate Components ... 75

Drought Components .. 79

Native Components .. 87

Geographic Components .. 88

A Framework Architecture .. 92

Chapter 6: Case Study – Two Decision Support Systems .. 94

The GreenLeaf Project: A reference implementation ... 95

The National Agricultural Decision Support System: An extension .. 97

Component Decoupling .. 100

Data Connectors.. 102

Model Decoupling ... 104

Developer Support .. 105

Conclusion ... 107

Chapter 7: Contribution and Future Work .. 109

Future Work .. 109

Bibliography .. 111

Appendix A .. 113

A1 – Sample FIRM Client Program .. 113

A2 – Client Program Output .. 116

LIST OF FIGURES

Figure 1: The 3Co framework architecture 7

Figure 2: An implementing architecture 14

Figure 3: Dynamic MBean class structure 17

Figure 4: Manager / Accessor design pattern 18

Figure 5: Example ServiceImpl class 20

Figure 6: Property accessor sequence 22

Figure 7: Example use of the DataSourceInjector and Logger services 25

Figure 8: GIS component class relationships 28

Figure 9: NCC deployment architecture 33

Figure 10: The FIRM data model 39

Figure 11: Persistent climate data model relationships 40

Figure 12: A CalendarDataCollection iteration example 47

Figure 13: Example FIRM output 47

Figure 14: Example data summation code 53

Figure 15: Example metadata iteration code 54

Figure 16: Example FIRM output 55

Figure 17: Persistent drought data model relationships 58

Figure 18: Example drought report iteration code 65

Figure 19: Example FIRM output 65

Figure 20: Persistent geographic data model relationships 67

Figure 21: The FIRM component model 73

Figure 22: The structure of a native component 87

Figure 23: FIRM application model diagram 95

Figure 24: NADSS application architecture 98

LIST OF TABLES

Table 1: Description of the station table 41

Table 2: Description of the absolute_location_table 42

Table 3: Description of the station_location_link table 42

Table 4: Description of the network_type table 43

Table 5: Description of the source_type table 43

Table 6: Description of the network_station_link table 43

Table 7: Description of the variable table 43

Table 8: Description of the daily table 44

Table 9: Description of the weekly table 44

Table 10: Description of the monthly table 45

Table 11: Description of the media_reports table 59

Table 12: Description of the user_reports table 60

Table 13: Description of the impact_reports table 60

Table 14: Description of the media_impact_link table 61

Table 15: Description of the user_impact_link table 61

Table 16: Description of the report_category table 62

Table 17: Description of the counties table 68

Table 18: Description of the cities table 68

Table 19: Description of the zip_code table 68

Table 20: Description of the spatial_reference table 69

Table 21: Description of the spatial_regions table 69

Table 22: Description of the reference_zip_code_link table 70

Table 23: Description of the reference_city_link table 70

Table 24: Description of the reference_county_link table 70

Table 25: The ClimateDataQuery component definition 75

Table 26: The ClimateMetaDataQuery component definition 77

Table 27: The DroughtIndexQuery component definition 80

Table 28: The DroughtImpactQuery component definition 83

Table 29: The DroughtImpactManager component definition 86

Table 30: The SpatialQuery component definition 89

Table 31: The LayerStatisticsQuery component definition 91

 1

CHAPTER 1: INTRODUCTION

MOTIVATION

 The growth of Internet applications used for everyday activity has resulted in an increase in

demand for high-availability data systems in research and decision support communities. This demand is

being met by the development of vast data repositories and applications that provide users with

information from current stock quotes to what friends are planning over the weekend. These data are

increasingly being used to make decisions and take actions. Whether recognized as such, many of the

web applications that people are interacting with every day could be considered to be decision support

systems. The increased awareness of data-driven web applications combined with their integration into

new decision workflows results in the greater availability of data to support decision-making activities.

Additionally, a new class of information worker emerges who is proficient in isolating data necessary to

more effectively make decisions.

 A traditional decision support system is defined as an information system that "draws on

transaction processing systems and interacts with other parts of the overall information system to

support the decision-making activities of managers and knowledge workers in [an] organization" [1]. The

workflows encapsulated by traditional decision support systems typically revolve around a user feeding

parameters into the system, the system computing some result based on the parameters, and the results

being presented in a usable format. In this type of decision support system, workflows encapsulate

domain processes based on the user classification. One of the more frequent uses of this approach is user

partitioning in software wizards; screens for Novice, Intermediate, and Advanced users are separated into

unique workflows from the same set source of data [1,2,3,4]. In this approach, each wizard incorporates

differing levels of functionality leading to a similar result.

 With the rise of web-based applications and the broader availability of data through the Internet,

decision support began to incorporate aspects of knowledge management. Static workflows gave way to

dynamic information discovery based on many sources of data. In this model, data are partitioned based

on their relationship to other data and are frequently fed through domain-centric models or workflows to

 2

create information. In these systems data and information can also be combined to create higher-order

data that are termed knowledge [4]. The data segmentation that has grown out of the introduction of

knowledge management principles has resulted in a significant focus being placed on domain models and

workflows as well as the acquisition of domain specific data sets. Where decision support systems were

previously driven by user controlled models and workflows, they are now largely being driven by

availability of domain-relevant datasets. User interactions with these systems require less focus to be

placed on the type of user and more on the kind of information that is needed. Domain models and

workflows become transparent to the overall tasks of data, information, and knowledge discovery. The

architectural constraints that are placed on what one can term a Data-Driven decision support systems

pose a number of new challenges to system development. These challenges arise principally from the

role of data integration in system development.

 With a focus on the availability of data to form information and knowledge, a Data-Driven

decision support system must be able to quickly integrate high volumes of unrelated data in order to

remain relevant. The availability of remote datasets accessed through platform independent protocols

must be easily leveraged by data-driven systems to provide detailed views and assessments within the

considered domain. This availability requirement poses a significant data integration challenge to

software developers creating such data-driven systems. Datasets can be as varied as the data

themselves, coming from static data repositories, network aware devices and sensors, or other

applications through web services. Web applications and services are becoming increasingly location-

aware, further complicating the data integration process by amassing large quantities of GIS data. This

creates an orthogonal data format to be integrated in the system. These GIS data repositories can easily

grow to multiple terabytes in size and are frequently delivered through geo-spatial web services external

to the system. With much of the data being external to the system, highly adaptive software must be

created to facilitate the integration and availability of data.

 A second challenge arises when one considers the domain specific models and workflows

encapsulated by decision support systems. While generally transparent to the decision support activity,

these models and workflows are required to create information and knowledge. The results of one

 3

process can become an internal dataset required by another process to create information or build

knowledge and thereby portray an accurate view of some domain state. External data can be integrated

to form an internal dataset supporting processes or published as a dataset to be consumed by other

systems. This requirement results in the abstract view of a decision support system being composed of

many connected paths passing through data integration points. At any given point, another dataset can

intersect the current path, requiring that the data be normalized in some way to allow integration to take

place. In the context of the software design, this problem can be easily addressed by creating a

normalized central dataset to support system processes. However, when considered in relation to the

evolving data landscape of the Internet, size of data sets, and the need to have current results, static

normalization of the data is often not an option.

 Data normalization can, however, be accomplished in software through the application of

Component-Oriented (CO) design principles [5,6,9,22]. By encapsulating dataset operations into

independent software components, processes interact with the dataset through software components

rather than directly. These software components give system developers a finer level of control

overdatasets that are disparately consumed and uniformly reproduced within the system. System

operations are partitioned into groups based on the data operations they wrap. This highly cohesive and

loosely coupled implementation pattern is a hallmark of Object-Oriented (OO) system design, and can be

very effectively extended to support data-driven software development [6,10,23].

 The primary goals of CO architecture are to address data flow between components and create

an infrastructure upon which to build use case conformant software [5,6,22,23]. In the context of

decision support systems, data integration requirements result in a loose view of date flow between

components. The architecture is less concerned with which components data may pass through and is

more concerned with how data passes in and out of the component. In order to realize this black box

view of component data flow, the architecture must enforce a strict data model. Logic for accessing an

individual dataset or executing some domain specific process or workflow is isolated in unique

components. Data integration is accomplished through runtime composition of component calls.

 4

APPROACH

 While this architectural view of a data-driven decision support system aligns with the unique

challenges presented by data integration, it fails to address the resulting component integration problems

that would arise from its implementation. Distribution and configuration of components around a unified

application model is needed to support application development in this paradigm. To address this

problem, this thesis proposes the implementation of a Service Oriented Architecture (SOA),which

integrates middleware services with the component model described above. The SOA is realized through

the implementation of a set of core foundation services consisting of the following elements:

1. A centralized management framework.

In a SOA, components can be distributed across multiple applications and systems. In order to

coordinate communication between components and determine the availability of a component

to process a request, a centralized controller is required. The centralized management

framework is introduced to act as a controller for all component invocations. The centralized

management framework is based on a design pattern for partitioning component management

operations and lookup services. Through the use of the Manager/Accessor design pattern,

component interactions are loosely coupled with centralized management framework

operations. The centralized management framework creates abstract groupings of components

around common configuration needs such as shared data source or domain workflows.

2. Core integration services API

Supporting the high-level configuration and discovery services provided by the centralized

management framework is a set of service APIs for managing component interaction with the

framework. Common crosscutting services like access control, logging, notification, data source

connectivity, and domain data model operations are made available to components through the

core integration services. The core integration services support the black box composition of

components within the framework and represents a bridge between framework functionality

and middleware services like connection pooling and load balancing. The core integration

 5

services also facilitate data sharing through the publication of services backed by component

implementations.

3. An integration component runtime.

An implementation of private core integration services API classes is made available to

applications through the integrated component runtime. The integrated component runtime

manages communication between framework components or consumer applications and the

centralized management framework. The integrated component runtime allows these

framework communication classes to remain private while at the same time being available to

callers to manage centralized management framework connections and component call

marshalling. The integrated component runtime provides the runtime context for all

components both internal and external to the framework.

The proposed framework implementation is built using several key Java technologies including:

Java Enterprise Edition (Java EE) 1.5 [8], Java Management Extensions [7], and Java Persistence

Architecture [11]. The framework takes advantage of many of the service and component oriented

constructs made available by these technologies. Additionally, the Java EE specification provides a

number of middleware services that are available to the framework to support required deployment and

runtime operations. While Java technology provides a platform upon which to implement the proposed

architecture, the key concepts presented here are not unique to Java; this architecture could be

implemented with other component-based development platforms.

OUTLINE

 The remainder of this thesis is structured as follows. Chapter 2 presents background and related

work. Chapter 3 presents the formal architectural specification for a service-oriented decision support

framework, discussing framework configuration, service providers, and application middleware and

deployment considerations. The Framework for Integrated Risk Management is introduced as a reference

implementation framework to support application development in the agricultural decision support

domain; Chapters 4 and 5 focus on elements of this framework. Chapter 4 introduces the domain model

 6

for The Framework for Integrated Risk Management, discussing various aspects of the model and their

support function for a component model. Chapter 5 presents the component model and discusses how it

is used to support development of application software. Chapter 6 presents a case study of two decision

support systems that used the framework, and Chapter 7 concludes with contributions and a discussion of

future work.

 7

CHAPTER 2: BACKGROUND AND RELATED WORK

 This chapter discusses the framework that is a predecessor to this work and drove to the

approach described by this thesis. In addition to the legacy framework, several key technologies that

emerged at the outset of this work are discussed. Some of these technologies were used in the

development described later and others were used as the basis for conceptualizing several architectural

patterns and methodologies that were later adopted by the framework presented by this thesis.

THE 3CO FRAMEWORK

 The 3Co framework was a framework developed to support the design and implementation of

components and component connectors to facilitate data integration. The framework focused on the

design of the components and connectors, as well as the coordination of components by runtime callers

[4+. These aspects, the three ‘cos’ of the framework, were used as the basis for the development of

decision support systems in the agricultural domain. The resulting decision support, The National

Agricultural Decision Support System, provided a basis for evaluation of the 3Co framework and had

significant influence on the work presented here. 3Co and NADSS and the issues that arose with

integration of new datasets during development of the systems were the driving factors in the design of

the architecture presented by this thesis.

 The 3Co architecture was a layered architecture, grouping components into one of four

classifications based on the data they would provide.

Figure 1: The 3Co framework architecture

 8

The high-level architectural view of 3Co is depicted in Figure 1. This hierarchical layered view of the

framework was realized by the classification of components as data, information or knowledge

components. Lower level components were used by higher-level components to generate data as defined

by the layer. Information layer components, for example, computed data values based on the application

of models to data layer component data. Knowledge components, in turn, used information and data for

computing values. The framework included an orthogonal spatial layer [12] that, through connector

definitions, allowed values from each of the three other layers to be rendered spatially.

 3Co provided a basis for the development of decision support tools and supported the

development of tools around connectors. Discussed extensively in Chapter 6, 3Co was achieved success

at developing decision support systems in a distributed environment. It was, however, the static

connector definitions that presented the largest obstacle to data integration within the framework. The

challenges to integrate data using the framework led to the consideration of a more agile and dynamic

architectural methodology to overcome data integration obstacles. The use of SOA as a basis for that

design was motivated by the more monolithic layered approach taken by 3Co. The proposed architecture

builds off many 3Co concepts of component orientation, generation of data through component

connection, and use of connectors for application modeling. These concepts are enhanced in several

ways by the availability of new technology and design styles discussed throughout this chapter.

SERVICE ORIENTED ARCHITECTURE

Service Oriented Architecture (SOA) is a way of composing an application through the

consumption of disparate component functionality delivered through a common network-aware

interface, a service. These applications aggregate many different data sources in what is commonly

termed a mash-up in order to provide their functionality. SOA builds on distributed system concepts that

have existed for many years [5,6,10]. The main difference is that SOA requires design parameters aimed

at simplifying many application integration challenges commonly associated with distributed system

implementation [10]. A SOA is composed of many services exposing operations mapping to application

use cases. A service has the following key properties [10]:

 9

 Platform Independence – The interface definition exposed by a service does not contain any

platform specific assertions or parameterization. This property gives rise to the use of XML-based

messaging over HTTP-based protocols for operation invocation. This property can be considered

one of the key components to the tacit linking of web services and SOA.

 Dynamic Service Discovery and Linking – Services register themselves in some way at runtime

allowing consumers of the service to bind to and invoke operations at runtime. This dynamic

binding is generally facilitated through a remote protocol such as IIOP or HTTP. This attribute

requires that services can be invoked.

 Service Autonomy – Services exist independent of each other, internalizing all operations and

state. Other services can interact with the service through the well-defined contract only. All

other information about a service is hidden.

These properties allow SOA applications to easily integrate application functionality provided by other

components or remote applications. The ease of integration, paired with the increased use of the World

Wide Web for application delivery, is resulting in the emergence of SOA as the de-facto standard for

Internet application development.

 From the standpoint of data integration, the concept of application integration poses several

potential uses. The elements of platform independence, linking, and autonomy can all be used to

support abstraction of elements in a component architecture for the integration of data as a service. The

architectural model also supports significant decoupling between its components, allowing for flexibility

in the design and implementation of architectural support elements. These aspects of SOA make it

appealing as a basis for a framework for data integration.

JAVA EE 5

 The Java Platform Enterprise Edition (Java EE) defines a standard architecture for developing

applications that “combine existing enterprise information systems (EISs) with new business functions

that deliver services to users” *8]. The Java EE specification, developed as JSR 244 in 2005 and 2006,

introduced significant improvements over J2EE. These improvements dealt primarily with the abstraction

 10

of the underlying framework from components being developed in it. The goal of the these

improvements centered around the use of plain old Java objects (POJOs) to be able to act as enterprise

Java beans (EJBs) with no more than annotations. EJBs, or the Java EE definition of a component, could be

easily constructed to incorporate only elements of the computational functionality required to implement

the needed business logic. Architecture services, like transaction and persistence, were also incorporated

into the component implementation through the use of annotations and deployment injection.

Functionality was incorporated into a component as it was deployed to a middleware runtime, not as it

was developed or packaged during development.

 The updates made with the Java EE specification not only make the platform an appealing choice

for the development of a framework for data integration, many of the elements of abstraction found in

the specification motivate the implementation strategy for such a framework. Component isolation

through middleware service injection can be used to provide significant decoupling between components

and framework services while maintaining service functionality. This design consideration, a hallmark of

object and component oriented design, is an important aspect of the proposed method for data

integration. Java and Java EE can also be used as the overall runtime platform for the proposed

framework, allowing the framework to be designed and implemented independently while at the same

time incorporating several robust services in deployment.

JBOSS APPLICATION SERVER AND FRAMEWORKS

 The use of JSR 244 elements in the design and implementation of the architecture presented in

this work were heavily influenced by the JBoss implementation of the specification. JBoss approached the

concept of service injection in EJB components through the application of aspect oriented programming

(AOP) [25], developing a weaving compiler to introduce service functionality to components. The use of

AOP as a basis for the separation of concerns within the framework motivated the development of a set

of integration services discussed later. The use of AOP was initially considered and then abandoned due

to overhead associated with development. Many of the AOP concepts, however, can be seen in the use

of proxy services and general structure of services discussed later.

 11

 JBoss also introduced the concept of the use of the Java Management Extension framework to

create deployable service components to support runtime configuration as well as EJB extensions to

create component connections [24]. The extended deployment structure was adapted to form the basis

for the later discussed centralized management framework. The deployment structure of the service

components was altered slightly to allow deployment external to the framework application, however the

annotation set used mimicked the JBoss implementation with only minor additions needed throughout

development.

 The design patterns used by JBoss in early implementations of a JSR 244 compliant application

server had the greatest influence on the design of the framework for data integration. While 3Co

motivated the solution to the problem, JBoss motivated the implementation of the solution in its use of

existing Java technologies to accomplish a number of service abstractions in support of deployed

application component models. Both of these factors, combined with the rich framework development

environment provided by Java EE were all incorporated in the development of a service oriented

architecture for data integration.

 12

CHAPTER 3: FRAMEWORK ARCHITECTURE

 Service Oriented Architectures (SOAs) are component-oriented systems that publish component

business logic for consumption by other systems [10]. The central building blocks in these systems are

the components, which encapsulate some domain-specific functionality. Components are designed to be

black box computational units, which work together to comprise the complete application functionality. In

the Java EE specification this black box structure is accomplished by providing a component interface and

implementation. An EJB container in application middleware manages the component instances, called

Enterprise Java Beans (EJBs); generally this is done using the Java Naming Directory Interface (JNDI).

Callers use the component interface to interact with component instances through proxies created by the

JNDI context. These proxies can be remote or local. Proxies to remote components use protocols like

IIOP, CORBA, or JNP to invoke methods on the component instances and can be deployed across JVMs;

local components restrict calls to the same JVM instance in which the proxy is running. The underlying

object instance created by the JNDI context is hidden from the callers through the component interface,

allowing transparent component co-location and facilitating system distribution.

 With this view of the component model, one can conceive of a component framework tied

together with services to support unification of data flows between components. By implementing a

framework architecture, component implementations are easily integrated by building them against the

common service structure and services can be easily created against common component elements. The

framework architecture presented here is made up of three abstract elements, the centralized

management framework, The core integration services and the integrated component runtime. These

elements together form the core foundation services. Each core foundation services service works

separately to collectively constitute an environment in which components can be deployed and

interaction with other components facilitated. This high-level view of the framework architecture

represents an abstract specification for the framework itself, omitting the component and data model

implementations. Implementations of this architecture provide data and component models, integrated

 13

with each of the Core Foundation Services. This abstraction is chosen primarily to allow application of the

architecture within multiple decision domains. Decision support systems span many varying domains

making the abstraction of an efficacious cross-domain application or component model difficult. By

providing architectural elements to facilitate loose communication between components through a well-

defined, domain-centric data model, wider adoption of the architecture for decision support system

development is supported.

 The goal of the framework architecture is to isolate domain processes, models, and data

repositories by encapsulating interactions with these elements in component invocations. This

component-oriented architectural organization of framework logic facilitates the inclusion of new data

and domain methods with little impact to the overall system. Only those components making use of new

additions need to be modified, and then only if the inclusion impacts the data model. In well-defined

application domains a data model will infrequently require change, providing near transparent inclusion

of components in the implementing system. A secondary goal of the architecture is to create an

environment where consumers of component data, information or knowledge can transparently interact

with the framework. Component bindings are externalized to support both internal system operations

and external systems. Due to the isolation of component and data access logic, the bindings can be

integrated with systems maintaining orthogonal data models. Model definitions are encapsulated in a

static object model, allowing component binding to take place without impact to the consuming

component or system.

 These architectural goals are accomplished by integrating the implementing component and data

models with the services offered by the core foundation services. The framework is designed to create an

environment in which supporting services are abstracted from the component and data models to

support greater integration flexibility. This abstraction allows the implementation to focus on the domain

modeling rather than framework development; service delivery and integration support are accomplished

through interaction with the core foundation services. The architecture is implemented by integrating

domain-centric component and data models with the services provided by the core foundation services,

resulting in the following view of an implementing architecture.

 14

Figure 2: An Implementing architecture

In this view, the component and data models are wrapped by the core foundation services to create

component implementations and facilitate access to external data repositories. The following issues are

addressed by the Core Foundation Services.

1. Shared configuration. Components require configuration parameters at runtime to determine

data source and service connection information, internal state, and runtime behavior. In many

cases these configuration elements can be stored as property files or in databases. Traditional

configuration mechanisms do not address the need for shared configuration between common

components that are not deployed together. In a distributed component deployment, where

multiple components may be abstractly linked through a common configuration, it is imperative

that all components participating in a data workflow share configuration state. This can be

accomplished in the framework by providing a common configuration factory using Java

Management Extensions (JMX). Distributed components can be notified through Managed Bean

bindings of parameter changes at runtime, preventing synchronization issues across

components. The framework can also utilize shared configuration services in order to determine

the availability of components to fulfill requests.

 15

2. Middleware integration. The Java Enterprise Edition specification provides a number a number

of middleware services for components to take advantage of at runtime. Middleware services

can be used to provide common data source and service connectivity, framework monitoring,

security, transaction management, and persistence [8,11]. While application servers provide

entry points to service APIs, it is important that framework components consume these services

in a uniform way to ensure common component operation. Shared configuration can also be

thought of as a middleware service and may be utilized by components to determine how

services are consumed. For this reason it is necessary for the framework to provide a

component bridge for accessing shared functionality.

3. Runtime integration. In order to achieve a loosely couple component architecture it is necessary

for abstract component bindings to be realized dynamically at runtime. A component runtime

can be provided that will supply dynamic component bindings at the point of invocation. This

allows for a greater level of distribution in the architecture. Runtime integration is also required

to provide service bindings to shared configuration and middleware services, isolating

component implementations from framework logic. The runtime is responsible for determining

component availability and provides a bridge to clients communicating with framework

components.

The core foundation services addresses each of these issues by providing managed services to framework

components. The following is a discussion of each of these services and their impact on the component

and data models.

CENTRALIZED MANAGEMENT FRAMEWORK

 The centralized management framework provides shared configuration for framework

components. The centralized management framework utilizes Java Management Extensions (JMX) to

deliver configuration and management functionality to components and to the framework itself.

Examples of management functionality can include the path to JNDI instances, external data source

bindings, log verbosity, or runtime instrumentation. The centralized management framework is

 16

composed of a Managed Bean (MBean) server wrapper and a set of objects conforming to a framework

design pattern called the Manager / Accessor Pattern. The MBean server can be created as a standalone

server or can utilize middleware MBean servers as discussed below. The centralized management

framework wraps the MBean server by providing a deployment interface for the runtime creation of

MBeans from properly annotated Java objects. This allows framework developers to express

configuration elements as part of the data model rather than constraining elements to a JMX-centric view

of the architecture. MBeans, known to the centralized management framework as services, are used as

service objects because they are decoupled from the configuration architecture and can include

crosscutting framework functionality.

 The Java Management Extensions (JMX) specification defines an architecture for monitoring and

configuring Java objects at runtime [7]. The JMX architecture provides several levels for deploying,

managing, and connecting to instrumented resources. The centralized management framework utilizes

the Instrumentation Level of the JMX architecture to publish services as managed resources. Resources

are made manageable (i.e. services are created) through the JMX Agent Level by implementing MBeans,

which are deployed to an MBean server. This Instrumentation Level pattern decouples the MBean from

the JMX implementation and allows any system class to be easily refactored into an MBean. Decoupling is

important in that it allows the inclusion of framework specific functionality like service persistence. The

Instrumentation Level also provides a notification framework to facilitate the propagation of notification

events between MBeans.

 The JMX specification defines two classes of MBean, standard and dynamic. Standard MBeans

are Java objects having an explicitly defined management interface. The management interface defines

the methods made available for invoking operations on the bean or reading and writing its properties, and

must conform to the Java Bean design pattern [13]. Standard MBeans expose managed attributes and

operations statically through the management interface and cannot be modified to expose additional

operations at runtime. The second type of MBean, the Dynamic MBean, exposes attributes and

operations dynamically at runtime by implementing a method which returns all operation and attribute

signatures. The JMX specification includes theDynamicMBean interface that a Java object can implement

 17

to be considered a Dynamic MBean. The interface specifies abstract methods for obtaining attribute

values or invoking operations. The following class diagram depicts a Dynamic MBean class.

Figure 3: Dynamic MBean class structure

Classes implementing the DynamicMBean interface must implement the logic to determine MBean

attributes, values, and operations at runtime based on parameter values. Attributes and their values can

come from XML documents, databases or other classes and the sources for attributes or their values can

be changed at runtime. Likewise, operation logic can be determined at runtime from multiple sources or

can be configured to different behaviors under specific system states. Dynamic MBeans offer greater

flexibility as management information can be updated, after the MBean has been deployed, in response

to state changes within the framework.

 The centralized management framework uses the JMX specification to create instrumented

resources for management of components. These resources are deployed by the centralized

management framework as services to be consumed by framework components. Because the centralized

management framework provides its own service persistence logic and access control, services are

realized through the implementation of Dynamic MBeans; the ability to create an abstract service

infrastructure built using JMX was a key driver in this decision. Services are identified by the centralized

management framework through the use of annotated classes following the Manager / Accessor design

 18

pattern. The Manager / Accessor design pattern was created to allow some configuration elements to be

made available to caller components while making others available to only the binding component. The

pattern is so named as it specifies two access objects for the component configuration, the Manager and

Accessor. The following diagram shows the class relationship that is required by the design pattern.

Figure 4: Manager / Assessor design pattern

In this design pattern, configuration is provided to a component through the Manager. The Manager

allows access to properties and operations that are to be made available to a component. Generally

these would include externalized properties and crosscutting operations. The Accessor in turn allows

access to operations that a component caller would utilize in order to access the component and exposes

no configuration properties.

 The Manager and Accessor are supported by two centralized management framework delegates

by extending an abstract base class providing delegate functionality. Each delegate provides the abstract

functionality needed by the extending object to service component requests. In the case of the Accessor,

the LookupService delivers service location functionality following the Service Locator design pattern [6].

The LookupService is used to locate components by class name from the appropriate JNDI instance based

on connection information provided by centralized management framework Services. This delegate

utilizes core integration services and integrated component runtime elements, discussed later, to provide

component bindings and determine connection parameters. Each Accessor extends the LookupService,

 19

creating a new delegate instance for each Accessor instance. The lookup logic is abstracted and

encapsulated in the LookupService and each component Accessor must pass the fully qualified component

interface class name to obtain a reference to a specific component. The LookupService maintains a

reference to a JNDI context defined in a configuration service and injected by the integrated component

runtime that is used to obtain remote component instances. This abstraction creates a single point of

lookup within the framework, which supports many component accessors and creates a common

integration point for binding to other CSF services. The Manager participates in a considerably more

complex set of interactions than the Accessor in that it provides proxy access to services through Dynamic

MBeans rather than relying on a single delegate implementation.

 A centralized management framework service is essentially a registered Dynamic MBean

wrapped by persistence logic provided by the centralized management framework and created from an

annotated class known as a ServiceImpl. A ServiceImpl is a Java object annotated as a Service whose

property reader and operation methods are annotated as a ServicePoint. The Service annotation requires

that an object name be provided for use by the centralized management framework to identify the

MBean that is created in the JXM Agent Level. TheServicePoint annotation allows for a default value to be

specified in the case of a property access method. Each annotation also allows a meta-data description to

be provided. Method parameters can optionally be annotated as ServicePointParameters in order to

provide additional meta-data to the method by describing parameter function; the meta-data are

encapsulated into an MBeanInfo object at the time the MBean is created. These annotations are used by

the centralized management framework in the deployment of services to determine which operations

and annotations to expose in the MBean.The following is an example of an annotated ServiceImpl class.

 20

Figure

Figure 5: Example ServiceImpl class

In the example, the ExampleServiceImpl is a Java class which implements the ExampleService interface.

This interface represents the management interface through which other components will access the

service functionality. The class is annotated as a Service and both an object name and the service

interface are specified. Despite implementing the ExampleService interface, the deployer will use the

actual annotation to determine how the MBean will be created, so the interface must be specified there;

this is known as the providerInterface. The use of interface inheritance is only a function of good OO-style

and could be omitted entirely as the methods’ invocations will be preformed dynamically at runtime with

the MBean implementation. The example class provides three methods, two of expose the myProperty

property. These follow the Java Bean convention for property access, and the getter is annotated to

expose the property in the MBean. The setter could optionally be omitted and would result in

myProperty being read-only in the MBean instance. The third method is also annotated as a ServicePoint

and would map to an MBean operation. The parameters of this method are documented with

ServicePointParameter annotations.

 The centralized management framework contains a deployment framework responsible for the

management of services through the creation of MBeans from ServiceImpl classes or instances. The

ServiceDeployer is the centralized management framework object responsible for creating and managing

the services. The ServiceDeployer maintains a reference to an MBean Server where the created MBeans

will be deployed. At the startup of the framework the ServiceDeployer will either create an MBean Server

@Service(objectName="edu.unl.sample:type=SampleService",

providerInterface=ExampleService.class)

publicclassExampleServiceImpl implements ExampleService {

 private String myProperty;

 @ServicePoint(defaultValue="hello world")

 public String getMyProperty() {

 returnmyProperty;

 }

 publicvoidsetMyProperty(String myProperty) {

 this.myProperty = myProperty;

 }

 @ServicePoint()

 publicvoidtranslateProperty(@ServicePointParameter(name="Language",

 description="The language to translate the property to")

 String language) {

 ...

 }

}

 21

associated with its instance or bind to a container managed server. An environment property is set to

determine how the MBean Server is obtained. Generally, if the framework is deployed in an existing

application server, the container provided MBean Server is preferred; this is the default behavior. The

ServiceDeployer creates a new service from a provided ServiceImpl by instantiating a new ServiceBase

object with an instance of the ServiceImp and deploying it to the MBean Server.

A ServiceBase is a Java object implementing the DynamicMBean interface as required by the JMX

implementation. The ServiceBase maintains internal lists of exposed getter, setter and operation

methods by evaluating the annotations on the provided ServiceImpl class through reflection. Each access

or invocation type is maintained in a separate list, one for getter methods, one for setter methods, and

one for operations. Methods without ServicePoint annotations are omitted from the method lists. When

the ServiceDeployer encounters an annotated getter method, it looks for a corresponding JavaBean setter

method for that property. If one is found, that method is added to the setter list and the property is

considered read/write. If not found, only the getter is added to the method list and invocations

attempting to set the value of the property will fail, resulting in read only access to the property. The

internal method lists are used by the DynamicMBean methods to provide attribute values and operation

invocations and allows the single type of ServiceBase to provide functionality for any number of services,

each differentiated by the underlying ServiceImpl instance. This structure enforces decoupling of the

centralized management framework services from the JMX implementation in that the JXM

implementation is only directly referenced by the ServiceBase and could be replaced at a later time by

another management architecture with no change to the centralized management framework service

implementations.

Service functionality is exposed to framework components through a Manager associated with

the service through the provider interface. Much as the Accessor provides component lookup

functionality, the Manager exposes service operation and attribute values statically by implementing the

service provider interface. The actual MBean attributes and values that the Manager wraps are invoked

using standard MBean access logic encapsulated in the abstract class ServiceBridge, which the Manager

extends. When constructed, the Manager invokes its super class constructor, passing in the MBean

 22

object name used when the ServiceBase was registered with the MBean Server. The ServiceBridge then

binds to the MBean and maintains an abstract MBean object reference for Manager operations to be

invoked against. In this way, a Manager class method implementations call super methods on the

ServiceBridge to access the backing MBean to return values to the caller. Caller classes could bind to the

MBean directly, removing the need for the Manager, however this would decrease type safety and

expose the underlying JMX implementation to callers.

The implementation of the Manager has the potential to create a significant security flaw in the

framework. In order for the ServiceBridge to invoke Manager operations it must have access to the

underlying MBean server. MBean server invocations need not be limited to only those named MBeans

that the framework manages; when using the container MBean server, the ServiceBridge has access to all

MBeans, including those which manage the container itself. To address the potential security exploits

that could be created by call interception, the pattern expressly requires that server-side classes only

extend the ServiceBridge. This prevents client code from having direct access to the MBean server. A

further guard is introduced by using the JMX security model to ensure that only authenticated callers are

allowed to invoke MBean operations. Authentication functionality is injected into the ServiceBridge by

the integrated component runtime runtime context discussed below. The following sequence diagram

illustrates an attribute access operation through the manager.

Figure 6: Property access sequence

 23

By using JMX as the underlying configuration infrastructure, the centralized management

framework can expose configuration attributes and operations to external management applications;

most notably the middleware management console for the application server hosting the framework.

This results in greater application deployment flexibility as the framework can easily integrate with

existing deployment management solutions so long as they support JMX. This implementation allows the

component configuration to be modified at any time in response to events like loss of connectivity or by a

deployment manager for maintenance or redeployment. The design of the centralized management

framework is such that is allows the framework to be easily adapted to changing deployment conditions

with minimized loss of functionality of the framework components.

CORE INTEGRATION SERVICES

 Where the centralized management framework encapsulates configuration logic and distributes

it to collections of components, the core integration services are framework specific components and

classes designed to support the implementation component model. Core integration services

components and classes provide component model implementations with framework functionality that

crosscut the domain model. The core integration services are designed to avoid redundant

implementation and normalize framework operations. Core integration services components and classes

support the component model implementation and integrate with other core integration services, data

repositories, classes and centralized management framework functionality; it can be thought of as a base

component model. The logic encapsulated by these components and classes are designed to cross cut

domain specific implementations and are provided to facilitate greater reuse and standardization among

component model implementations. The core integration services act to provide middleware

functionality to the framework components, exposing functionality of the deployment containers to

components in a framework specific way. This isolation of components from direct container interaction

results in a more portable framework. As long as the core integration services are implemented to

specification in a Java EE compliant container, framework components can be deployed into that

environment.

 24

 The core integration services are a collection of components and classes, interacting with the

framework in the same way as component model implementations. Foundation services are provided to

component model implementations through the same service model used to integrate components. This

allows the extension of the framework with new service functionality to take place without modification

to existing component implementations; it achieves the black-box goal of the framework internally.

Service implementations in the core integration services can take two forms: direct invocation or proxy.

Direct invocation services are those that are statically bound to component implementations (i.e. the

component class maintains a reference to an object instance providing the service). Proxy services wrap

component invocations to extend the functionality of the component in a uniform way and can alter the

flow control of the component invocation.

Direct invocation services are generally responsible for delivering integration points to

middleware services, wrapping that functionality in a framework specific way. The core integration

services include a direct invocation service called the DataSourceInjector. This service encapsulates the

logic to perform a JNDI lookup on a JDBC data source created by the middleware container. The

DataSourceInjector provides a uniform way to bind components to JDBC data sources. The static class is

supported by a DataSourceType enumeration that contains a list of system data sources. The use of an

enumeration is designed to make refactoring application code easier as a single update can change all

references to a specific data source type. The data source types can be bound to JNDI data sources in the

centralized management framework, allowing data sources to be dynamically swapped out at runtime.

The DataSourceInjector can optionally use a string argument representing the JND name, bypassing the

static enumeration.

A second direct invocation service commonly used across component implementations is the

Logger. The Logger provides uniform logging services to components and classes and can integrate with a

JDBC resource, external file, or container managed logging services to log statements are runtime. The

Logger is bound to centralized management framework services to allow control of statement logging at

runtime. Statements passed to the Logger are bound to the classes from which they were issued,

allowing for better processing of log information. The Logger provides four loggers, partitioned around

 25

the functionality encapsulated by the object logging statements. These loggers include a component,

service, system, and application log to control how logging information is stored and allowing different

framework functionality to be logged at different levels. Log levels are used to indicate the type of

statement being logged and are used when setting logger verbosity. Statements are logged as either

fatal, error, warn, info, or debug. These levels can be set separately for each logger, allowing, for

example, all services to log fatal errors only, while components log debug information. The design goal of

the Logger is to allow the system to be adjusted at runtime as needed to isolate faults or determine

infrastructure needs. The following is an example of a component using the DateSourceInjector and

Logger services.

Figure 7: Example use of DataSourceInjector and Logger services

 In addition to middleware service wrappers, the core integration services provide several

components that wrap external functionality in a framework-centric way. One such service included in

the core integration services is a search engine that integrates with the data model implementation and

acts as a direct invocation service. The SearchService provides full text fuzzy search logic by indexing

objects implemented as part of the data model, building on object persistence logic provided by the Java

Persistence Architecture (JPA). Objects that are to be indexed and queried through the SearchService

must be JPA annotated Java objects. The SearchService requires that, in addition to JPA annotations, a set

of search annotations be included as well. These annotations are used by the SearchService when

publicclassSampleComponent {

 privateDataSourcesource =

DataSourceInjector.injectDataSource(DataSourceTypes.SYSTEM);

 privatestatic Logger LOG = Logger.getLogger(Loggers.COMPONENT_LOG,

SampleComponent.class);

 publicvoidclearUsageData() {

 Connection conn = null;

 try {

 conn = source.getConnection();

 } catch (Exception e) {

 LOG.error("could not obtain a connection", e);

 LOG.debug("Total memory: "+Runtime.getRuntime().totalMemory());

 }

 ...

 }

}

 26

generating indices to identify searchable objects, properties exposed for search, search result description,

search result identifier, search result name, and search result meta data. The latter five annotations are

used by the SearchService to build search result objects that will be returned when a search operation is

invoked. These search result objects are proxies for the actual Java objects, exposing only those

annotated values to maintain smaller search result sets. The actual object can be loaded from each

search result to provide all data encapsulated by the object. Objects are loaded and indexed by the

SearchService using reflection to determine searchable properties and result values. The SearchService

integrates with the centralized management framework to expose management operations for building a

new search index.

 Apache Lucene
2
 provides actual search logic; the SearchService is a black-box wrapper for this

functionality, which could be replaced without impact by another search provider. The main goal of the

SearchService and its annotations is to wrap the functionality of the implementation search engine to

abstract it away from caller components. This would allow for other search engine implementations to be

substituted after implementation with no impact to the component or domain models. The operations

and annotations provided by the SearchService are generic enough to facilitate search operations without

need for implementation specific data to be incorporated into the domain model, decoupling the search

implementation from the data model. This decoupling is further reinforced through the use of a generic

search result object. The SearchResult object includes methods for generically obtaining search result

information based on meta-data included in data model objects. The basic elements of a search result are

the result title, text or description, and any additional named meta-data. Each SearchResult maintains the

lookup parameters of the data model object mapping to the result, allowing for object to be loaded as

needed. The primary driver for the encapsulated search data is to increase performance of result

rendering by clients.

 The core integration services also include a bridge to GIS services for accessing, manipulating,

and publishing spatial data. The GIS service bridge is included to give framework components direct

2
 http://lucene.apache.org/java/docs/

 27

access to spatial data. Unlike standard relational databases, which can be referenced through

middleware services provided by the application container, spatial operations require either custom

implementation or integration with external services. The spatial operation components included with

the core integration services are backed by commercial GIS packages from ESRI and include ArcGIS Server,

ArcObjects, and ArcSDE. The integration of these products as components in the framework is based off

work in [12]. The premise behind the GIS services is that framework components may need to consume

or produce spatial data and that production or consumption of the data should happen in a framework-

centric way. Due to the complex nature of GIS service components, transparent integration with external

services is far more practical than development of internal components to manage GIS operations. By

utilizing an external service, GIS data produced by the framework and can be easily published and shared

with other systems in a standard way. The abstraction also allows for the external GIS service to be

replaced as needed with little impact on the framework components utilizing its functionality.

 Framework components access GIS functionality through two components, the MapQuery and

MapArchive. Several classes designed to implement an abstract spatial data model support these spatial

components. Generally, the implementation of a component and data model as seen here would be left

to framework implementations, however due to the cross cutting nature of GIS operations, the models

are included in the core foundation services through the core integration services. The following class

diagram shows the relationship between GIS components and data objects.

 28

Figure 8: GIS component class relationships

The MapQuery is a stateful component that maps GIS operations to a corresponding GIS server object.

Before any operations can be invoked on an instance of a MapQuery component, it must attach to the

server object; this is done by calling open(). Once attached, the MapQuery can create, manipulate,

export, or query data from the GIS server based on data encapsulated by the server object. The set of

operations is designed to allow the framework to easily produce new or modify existing GIS server

objects. Operations are specifically generalized to allow application across multiple domains, representing

GIS authoring functionality as opposed to full GIS. For example, network analysis functionality is not

present in the MapQuery as it is a more specialized kind of analysis.

 29

 Server-side GIS objects are made known to the framework through the MapArchive. The

MapArchive provides JPA bindings, with framework specific attributes, to server-side GIS objects accessed

through the MapQuery. The purpose of the MapArchive is to give framework components access to

persistent GIS data in the framework backed by GIS server objects. References to server-side map layers

are maintained in the framework by the ArchivedMap entity. The object model mapping allows the

framework to access and manipulate persisted GIS data stored in the server repository through the

MapQuery. While ArcGIS Server does provide visualization functionality, this is not incorporated into the

framework due to its specificity with the ArcGIS Server implementation. Map visualizations are

accomplished in the framework by exporting a view state associated with the server object as a collection

of map layers on an ArchivedMap or as a static image. The ArchivedMap, weather or not it is being used

for visualizations, links to a server side GIS object. This allows for static visualizations to incorporate

aspects of analysis through the MapQuery. Map layers are generated in the framework to be displayed

with Google Maps as either Keyhole Markup Language (KML) documents or as a collection of cached map

tiles in Portable Network Graphics (PNG) format. The implementation of the framework GIS components

can be seen to map the MapQuery to ArcGIS Server and the MapArchive directly to ArcSDE. Respectively,

the components provide GIS authoring and storage functionality, and isolate the GIS implementation from

consuming framework components.

The framework provides a user profile component as part of the core integration services. The

UserProfile is a component containing a number of methods for creating, managing, accessing

information about, and authenticating a user. The UserProfile is implemented as a component to allow

binding with other components transparently. Information in the UserProfile is encapsulated in an entity

called the Identity. The basic properties associated with the profile are persisted in the system database

using JPA through the Identity object. The Identity object provides a link between the abstract concept of

a user profile and other persisted objects like archived maps (discussed above) and folders (discussed

below). Components interact with the Identity through the UserProfile by invoking operations that wrap

the Identity data. A component obtains a reference to UserProfile through the standard framework

lookup services. The initial reference is in an unauthenticated state, meaning that it is not associated with

 30

any specific Identity. Any operations invoked while in this state result in an InvalidStateExcception. The

only operation that can be invoked in this state is authenticate(), which takes as arguments a user id and

password. If the credentials provided match an Identity in the system, the UserProfile is then bound to

that Identity and its state represents that of the user. A single UserProfile object cannot be “re-

authenticated” to represent another user, a new component reference must be obtained.

 The UserProfile core integration services component by itself provides little useful functionality;

its benefit to the system is realized when paired with two additional core integration services elements.

The first of these, a folder management service, allows component model data to be bound to a specific

user and persisted in the system database. A Folder is a persistent entity that is tied to the Identity and

exposed to the system through the UserProfile. Using a Folder, the results of component operations can

be stored in the system, allowing them to be quickly retrieved at a later time. This functionality can be

used for archival of results or as a caching system for component invocations. The Folder is a standard

Java object containing a name, a mapped Identity, and a list of FolderEntry objects. A FolderEntry object

in turn maintains a description of its contents, a reference to the Folder to which it belongs and a

reference to the binary contents of the entry stored on the file system. The FolderEntry has operations

for reading and writing the referenced contents file. FolderEntry contents are managed through the

UserProfile by the component that will persist the result.Folder access is provided to components through

the UserProfile.

 In addition to providing component result storage, the folder management service also provides

operation scheduling to allow component invocations to be made at scheduled intervals and the results

stored for later retrieval. The FolderAutomator is the persistent object responsible for invoking

component operations and storing them in an associated Folder. Scheduling information is maintained by

the FolderAutomator allowing the system to determine if the automation task should be invoked;

invocations are performed by an instance of Executor. The Executor is an abstract class that provides

Threaded execution logic and FolderEntry management. Operations are scheduled by creating a

FolderAutomator and specifying a specific Execution class to generate the result that will be written to a

FolderEntry. The Executor class will lookup components and invoke the necessary methods to generate a

 31

result and return it as a byte array to the FolderAutomator. The FolderAutomator then creates a new

FolderEntry for the result, which is then written to the file system. The system maintains a task that will

query FolderAutomator objects form the system database based on scheduling information and execute

the automation task as needed.

 The second core integration services element that is paired to the UserProfile is an access control

service. This service represents a core integration services proxy service, as its functionality wraps

component invocations to determine if the invocation should take place. The access control service works

by introducing the concept of a Role to the Identity object. Rules can be created for controlling which

Role objects are allowed to invoke operations on specific components; these rules are encapsulated in

ACLRule objects. The ACLRule is a persistent object that stores a regular expression representing the

component name and operation that the rule governs, the role or user ID the rule is applied to, and the

precedence ordering of the rule. The precedence is used to determine the order in which an ACLRule is

applied to determine if an operation can be invoked. This is useful for allowing specific user overrides to a

role restriction on an operation.

 The AccessController, which manages ACLRuleobjects, is a component used by the system to

create, query, and remove ACLRule objects from the system. The ACLController is not responsible for

enforcement of an ACLRule, the object itself is used by the UserProfile to determine the Boolean state of

the rule. Access control functionality is delivered by the UserProfilethrough the allowCall() method. This

method takes a string representation of the component method signature and evaluates it against all of

the rules applying to the specific Identity and roles associated with the UserProfile. A list of ACLRule

objects is obtained from the AccessController for the unique user ID and any roles associated with the

UserProfile. These objects are then evaluated against the method signature in order of precedence and

the final Boolean result is returned. If the ACLRule does not apply to the method signature, it is skipped,

preventing non-applicable rules from setting the call state to false.

 32

INTEGRATION COMPONENT RUNTIME

 Proxy services included in the core integration services give component developers a way to

inject service functionality into components they create, however they are not always capable of

delivering functionality at runtime. In the case of access control functionality, the abstract elements for

controlling access to components is made available through the core integration services and rules for

access can be described using the core management framework. But, these two foundation services

cannot enforce component call checks at runtime without being explicitly invoked at the outset of each

method call. This process would be complex and require significant crosscutting logic to be intertwined

with each component implementation, defeating the purpose of both the centralized management

framework and core integration services. To address the service/component runtime integration issue,

the framework architecture provides an integrated component runtime.

 The integrated component runtime maintains the foundation service context at runtime,

allowing framework callers access to the runtime services provided by the core foundation services.

Framework callers can be other framework components or external systems. The integrated component

runtime is a component runtime in that component access cannot take place outside of the service

context, which is initialized and maintained by the integrated component runtime. The deployment

architecture of the framework is based on a client server model; each component or calling system

becomes a client to any other component that it makes calls from. The “server”, or component instance

being called, is identified to the caller, or client, by the centralized management framework through the

service context. In this way, a unified framework can be transparently created in a distributed

environment though a single service context. This single service context translates into a single runtime

instance of the centralized management framework with a distributed component deployment. For this

reason, the MBean server used to support the centralized management framework is generally

instantiated and maintained by the integrated component runtime running in server mode. The following

diagram illustrates this deployment architecture.

 33

Figure 9: NCC deployment architecture

 When bootstrapped, the integrated component runtime can run as either a client or a server.

The singular difference between these modes is that, when in server mode, the integrated component

runtime will instantiate two services. The first is the deployment service supporting the centralized

management framework. The deployment service will scan a local file system for Java Archive (JAR) files

containing configuration classes annotated with centralized management framework annotations. From

these, MBeans will be created and deployed to the MBean server also created by the deployer. In server

mode, the integrated component runtime will listen on a preconfigured port for management requests

for the centralized management framework, the network URL to this port is known as the framework

home. The second service is a native component container. Framework components are designed to rely

on Java EE application server EJB containers for deployment; this, however, limits components to pure

Java objects. In order to support legacy components, the system also provides a mechanism by which

native code (compiled binary libraries) can be used to support components. Due to constraints placed on

the EJB container, these components cannot be deployed with the pure Java component

implementations. The integrated component runtime supports native component deployment by creating

 34

a Remote Method Invocation (RMI) object registry into which native component instances, implemented

as RMI components, can be bound.

The so-called Native Component Container (NCC) itself can be run in two modes, master or slave.

This bimodal operation of the NCC is designed to facilitate load balancing by distribution of computational

tasks preformed by the components. When the NCC is instantiated it broadcasts a UDP handshake

request across the network. If no response is received, the NCC operates in master mode, utilizing its own

deployed components to fulfill complete component operation requests. If a response is issued back to

the instance that broadcast the handshake request, the NCC will execute in slave mode, utilizing its

components to perform partial computations of component requests. The partial request is partitioned

by the master NCC and sent to slaves as single component operation requests. Results are returned to

the master NCC, the component caller, which will then merge results from all slaves into a single object

and return the merged result to the original component caller. Native component callers receive the

result transparently from a single component instance served by the master NCC but partitioned and

delegated to the slave NCCs.

Apart from runtime service creation, the integrated component runtime functions no differently

between client and server implementations and supports the centralized management framework and

core integration services by providing execution contexts for runtime operations. The integrated

component runtime maintains a management context to deliver attributes and operations to components

by creating a binding between the centralized management framework ServiceBridge and the MBean

service URL (framework home). The centralized management framework classes use this context to

perform its MBean operations. A component runtime context is maintained by the integrated component

runtime building on the component implementation model by creating a proxy based on the component

interface. Components are added to the runtime context by the LookupService, which binds component

references to the runtime context through a proxy. The integrated component runtime proxy class, called

a ComponentInvocationHandler, contains an invocation method that wraps the component invocation

and allows additional operations to take place before the method invocation or after the invocation

before the return. Component callers interact with an instance of the ComponentInvocationHandler

 35

rather than the component reference returned by the JNDI. The ComponentInvocationHandler instance

is created with the component interface and the component reference returned from the JNDI; the

component reference is known as the backing bean. The LookupService returns the

ComponentInvocationHandler instance as an instance of the component interface providing transparency

to the caller; the instance is known as the contextual component.

As methods are invoked on the contextual component, the ComponentInvocationHandler

invoke() method is actually being called. This method takes three arguments, the instance of the object

being called, the method being called and an array of method arguments; calling invoke and passing these

arguments is handled by the Java proxy class, java.lang.reflect.InvocationHandler. The invoke() method

contains the core integration services proxy service bindings that will interact with the component

invocation. Depending on the result of the core integration services calls, the invoke() method will call the

argument method on the backing bean held by the ComponentInvocationHandler. The result of the call is

the standard component result. Additional core integration services methods will be called prior to

returning the component result and may result in modification to the result data. The integrated

component runtime can be extended to add component context logic, such as result caching, through

provided annotations, with two proxy services explicitly defined by the integrated component runtime:

access control and error logging. Error logging functionality is delivered by performing a checked call to

the component and, in the event of an exception, logging it prior to the return. Component error logging

is done on the client error console rather than the framework log system to ensure that fatal errors are

reported even if the client cannot communicate with foundation services.

Access control logic is supported by the integrated component runtime bootstrapping process.

This process ties the integrated component runtime instance to the framework through the UserProfile;

this enables the access control functionality by identifying a runtime user (the developer) to the

framework. In order to bootstrap the integrated component runtime a developer token must be present

on the integrated component runtime (or framework) classpath. The developer token (firm.token) is an

ASCII text file containing a UUEncoded encrypted string with the user ID for which the token is associated

as well as the MD5 hash of the user password. At runtime, an integrated component runtime class will

 36

load the token, decrypt the contents with the public key provided by the framework API, and authenticate

the user, placing the profile in the runtime context. If the token cannot be found, or the user is not

authenticated, the runtime bootstrap will fail and terminate the Java runtime with an error message. The

integrated component runtime bootstrap process takes place at the first component lookup, not at the

start of the parent process, preventing the need to include bootstrapping logic in framework client

software. When a method call is made on a contextual component the UserProfile is loaded from the

runtime context and an access control check is made as discussed above using the arguments to the

invoke() method. If the result of the ACL check is false, the invocation will throw a security exception; if

true, the invocation will continue as normal, performing any additional proxy service operations around

the actual component invocation. The ACL check is the first action preformed by the

ComponentInvocationHandler preventing unnecessary logic from executing in the event of an access

control failure.

The integrated component runtime allows FIRM to deliver service functionality transparently

thought standard Java APIs. Clients of the framework running in service context can interact with

framework components as if the objects were local to the JVM in which the code is being executed. The

communication protocols and component bindings are handled by the integrated component runtime,

requiring minimal awareness of the remote nature of the components at runtime. This concept, protocol-

unaware component binding was a key motivator in the design of the integrated component runtime and

is one of the benefits of the core foundation services.

FRAMEWORK INSTANCE

 Thus far the discussion of framework architecture has focused on the encapsulation of

orthogonal component support logic through the development of foundation services. With an

understanding of the core foundation services that the framework architecture provides to facilitate

component interaction the remainder of this thesis will focus on the development process within the

model presented. The primary focus of development will be on the creation of a domain data and

component models. These two elements (Chapters 4 and 5) are required to form a complete framework

 37

implementation and will be directly impacted by the core foundation services. Later (Chapter 6) a

discussion of application implementation based on the framework will be provided, demonstrating how

the core foundation services can support the use of component-oriented design in the development of

end-user software systems. The implementation discussion will revolve around the instance of the

framework architecture named The Framework for Integrated Risk Management
3
 (FIRM). FIRM is a

framework designed to support the development of decision support tools in the agricultural risk

management domain.

The agricultural domain was selected as the domain for the framework development to allow

comparison with the 3Co framework [4]. This domain is beneficial for several reasons. First, and

foremost, it allows a comparison with 3Co and its implementing end-user application. Second, it provides

a rich environment with many spatial and temporal data sets; both of which frequently change with the

addition of new data. Lastly, the processes driving decision support in this domain are made up of many

staged analysis. Data from one analysis method often serves as the input for another and therefore map

well into the desired component structure supported by this framework architecture.

3
 At the time of writing several FIRM codebases exist. The version 1.0 (Thresher) code base was released in the fall of 2007 with

several minor updates subsequently made. A branch of the Thresher code base was forked for a minor (1.1) release (Wildwoods) in
the spring of 2008. The branch removed several unused elements of the framework. A third code base (2.0 also branched from
Thresher) is scheduled for release (Mozart) in the fall of 2009 and further refines elements of the architecture, adjusting the
communication model to better support the emerging Cloud Computing paradigm. As this work has been written over several years
and started with the development of the Thresher codebase, the discussion will focus solely on models found in that code base,
restricting the analysis discussion to the Thresher release. A light discussion of the rationale for the adjustments made to FIRM over
its 2-year deployment lifecycle can be found in the Chapter 6. Detailed discussion of the later versions of the code base is to be
provided by later works.

 38

CHAPTER 4: FRAMEWORK DATA MODEL

 The FIRM data model describes the many data sets that are accessed by the higher-level

framework components. The purpose of this model is to allow normalized interaction between

components and data sources as well as components with other components. The model is made up of

two core elements, the persistent data model and the transient data model. The persistent data model

represents a datum in a persistent state (i.e. in storage), made available to components through

interaction with external systems in a specific way; an example of this is accessing data stored in a MySQL

database using SQL queries. Data in the persistent data model are typically encapsulated by a single

component. The transient data model represents data in a transient or runtime object encapsulated state,

made available to other framework components and systems by component bindings.

 One of the primary goals of the transient data model is to incorporate data access methodology

in a naturally semantic way. The APIs that are provided by the transient data model should map to real-

world data actions. When implemented properly, code utilizing the transient data model should read as if

the process to read data were being described in natural language; or as close to this as possible with and

Object Oriented language. The transient data model is realized by collections of abstract data types

(ADT), which encapsulate the data they describe at runtime. In this view of the data model, data in the

persistent data model serves as input to base-line framework components (stove pipes), and data in the

transient data model serves to allow bindings to be formed between components and systems.

 39

Figure 10: The FIRM data model

The diagram above illustrates the data model concept and shows the 3 main data types

described by the model: climate, drought, geographic. The model is partitioned based on these data

types in order to represent the unique properties of each. The persistent and transient aspects of the

data types together constitute the complete domain data model upon which the component model will

be built.

CLIMATE DATA MODEL

 As a framework designed to support decision making in the agriculture domain, FIRM data

objects are modeled primarily on climate data and their relationship to other aspects of the system.

Climate data values form the basis of much of the logic encapsulated in the framework, from historical

trend analysis to drought severity quantification, temperature and precipitation values serve as input to

nearly every included model. Climatic data is time sequence data organized by spatial locality, the

smallest recognized unit of which is referred to as a weather station. Weather stations can be generally

thought of as collections of data for a fixed point in space; they most often map to a physical piece of

hardware (the station) that collects data. FIRM is capable of housing data for stations belonging to

multiple networks or for common IDs in a single network.

 40

Persistent Data Model

FIRM represents weather stations and their data sequences with a relational data structure. This

differs from the temporal structure utilized by the data source provider
4
. The data specification used by

FIRM differs from that of the domain in order to facilitate both spatial and temporal operations against

the data. The nature of weather stations is such that they may be “offline” for time intervals, reporting

no data, and then come back online in a slightly different physical location. Because of this, the model

separates out basic station information with its locale and network association. Additionally, FIRM can

manage data for common stations across multiple data sources. A data source is a service from which

data is collected. The following diagram illustrates the table relationship defined by the persistent climate

data model.

Figure 11. Persistent climate data model relationships

Each station reports data for a number of variables, which can differ across station networks and data

sources. Variable linkage with a station is therefore both source and type dependent. Data are generally

4
 Climate data for FIRM are provided through a partnership with the High Plains Regional Climate Center, a part of the National

Climatic Data Centers (NOAA NCDC) Applied Climate Information System (ACIS) network.

 41

reported, and therefore available, at daily time intervals. FIRM summarizes data, where feasible, to

weekly and monthly time periods for independent storage. The purpose of summarization is to increase

performance of queries by limiting the calls to the daily data table.

 The following tables describe the relational organization of data contained in the persistent

climate date model. In addition to the climate variable values, the persistent climate data model defines

information about the data collection. These data provide useful meta-information to associate with

many of the higher-level domain specific processes and are encapsulated by the component model.

Field Description

station_id (k) The model generated primary key.

station_name The name provided by the source / network for the station.

state The state in which the station is located.

county The county in which the station is located.

climate_div The climate division in which the station is located.

abs_start_date The earliest starting date for any variable reported by the station.

abs_end_date The latest ending date for any variable reported by the station.

default state Legacy value, deprecated when CORBA components were removed.

source_key The primary key of the record describing the source of data for the station.

Table 1. Description of the station table

The station table provides an entry point for requests in the persistent climate date model. All data is

organized, at the highest level, by station. The table contains the base metadata for stations, describing

both the temporal window of data collected for the station, as well as information about the source from

which the station is populated. Locale information for stations is split between the station table and the

absolute_location table. Basic geopolitical metadata is stored with the primary entry in the station table;

geospatial metadata is linked to the station through the location_station_link table. The need to partition

geospatial and geopolitical metadata for stations arises from the fact that, due to the nature of weather

stations, a station may be relocated over time with or without interruption of data reporting. In order to

maintain a single record per station in the system, the change in reporting or location must map to the

unique ID of the station. In this way a singular record of data, which may contain periods of no reporting,

can be queried.

 42

Field Description

location_id (k) The model generated primary key.

latitude The latitude of the station in degrees.

longitude The longitude of the station in degrees.

elevation The elevation of the station in ft. above sea level.

Table 2. Description of the absolute_location table.

Field Description

link_id (k) The model generated primary key.

location_id The ID of an entry in the location table.

station_id The ID of an entry in the station table.

start_date The date on which the station begins reporting data.

end_date The date at which the station stops reporting, a value of 9999-99-99 indicates that the station data record

is current.

Table 3. Description of the station_location_link table.

 Data in the persistent climate data model are compiled from multiple sources that provide

reported data for weather stations operated within a specific network
5
. Of the various networks that are

represented by the persistent climate data model, there exists variance between stations reported and

available data variables. Due to this variance, stations in the persistent climate data model must maintain

metadata describing the network from which the station is queried as well as the source of any queried

variable. Networks are differentiated from sources based on uniqueness of ID. Within a single network

there exists no overlap between stations IDs; an ID maps to a single station. A source for a station may

provide data from the same network as another source but apply quality assurance algorithms to the data

before storage in order to generate a more serially complete record. Because of this, the persistent

climate data model may contain two instances of the same network station, each form a differing source,

reporting differing “completeness” of results. Because the source of the data within a network

5 FIRM collects data from two primary networks, the National Weather Service Cooperative Weather Station Network (NWS COOP)
and the Automated Weather Data Network (AWDN). The NWS COOP network is made up of observational stations and generally
has a longer reporting window for station values. Stations in the AWDN report values automatically and are available daily.

 43

differentiates the value of a data variable, the source becomes variable specific metadata, while the

network to which the station belongs is station level metadata.

Field Description

network_type_id (k) The model generated primary key.

network_name The name of the weather station network, examples include: AWDN, COOP, SNOWTEL.

Table 4. Description of the network_type table.

Field Description

source_type_id (k) The model generated primary key.

source_name The name of the data source, examples include: ASIS, NOAA.

Table 5. Description of the source_type table.

Because a given station may exist in multiple networks, the metadata describing the network is linked to

the station table in order to eliminate redundancy in the station table, providing a schema in third normal

form (3NF).

Field Description

network_station_link_id (k) The model generated primary key.

network_id The ID of an entry in the network table.

network_type_id The ID of an antry in the network type table.

station_id The ID of a weather station in the SDM.

Table 6. Description of the network_station_link table.

 The purpose of the schemas discussed to this point is to provide a structure for organizing the

data represented by the persistent climate data model. The remaining schemas link to this organizational

structure and describe stored climatic variables and the time sequenced values for those variables.

Field Description

variable_id (k) The model generated primary key.

variable_name The name of a variable that can be accessed from the SDM, values include: PRECIP, HIGH_TEMP,

LOW_TEMP, AVG_TEMP .

station_id The SDM generated ID of a station reporting the variable.

start_date The first date on which a record of the variable exists.

end_date The last date on which a record of the variable exists, a value of 9999-99-99 indicates a current record.

source_type_id The source of the station from which the variable was queried .

 44

Table 7. Description of the variable table.

The variable table is used to store information pertaining to each of the climatic data types that are

represented in the persistent climate data model. The source specific name for the variable is paired with

a station id and bound with a start and an end date. This indicates that a given station reports the

variable under consideration for period from start date to end date. For each variable type and unique

station ID, there is a single record in the variable table. If a station contains a gap in the data record for a

specific variable, the absolute date range is used; that is to say the period of missing data will be

represented by the system missing data flag. The persistent climate data model generated ID for the

source of the station is also provided and allows for a mapping of source specific variables to stations.

The variable table constitutes a mapping of raw data to source typed stations. The data values map to a

specific variable as described by the following schemas.

Field Description

daily_id (k) The model generated primary key.

variable_id The type of variable that this value represents.

year The year in which the value was reported.

month_num The 1 – 12 month in which the value was reported.

day_num The 1 – 31 day on which the value was reported.

value The numeric value.

flag A flag indicating a synthetic value generated by a quality control algorithm.

backup_value The original value if a quality control algorithm updated the value.

Table 8. Description of the daily table.

Field Description

weekly_id (k) The model generated primary key.

variable_id The type of variable that this value represents.

year The year in which the value was reported.

week_num The 1 – 52 week to which daily values have been summarized.

value The summarized value of a week of daily reported values.

Table 9. Description of the weekly table.

Field Description

monthly_id (k) The model generated primary key.

 45

variable_id The type of variable that this value represents.

year The year in which the value was reported.

month_num The 1 – 12 month to which daily values have been summarized.

value The summarized value of a month of daily reported values.

Table 10.Description of the monthly table.

 Variable values (data) exist as time series data in the persistent climate data model and are

stored in 3 time units: daily, weekly and monthly. The primary format for storage of all variable values is

the daily format. For the purposes of increasing performance of many higher-level processing functions,

the persistent climate data model defines schemas for weekly and monthly summaries of all daily variable

values. Such summaries are generated for each period (weekly or monthly) in a year and are based on

the stored daily values; which is to say that the summaries are the results of summarization on quality

controlled data. Each value is stored with a reference to the variable that it represents and the necessary

temporal mapping field(s) (i.e. day, week, month, or year). Each value is assigned a persistent climate

data model generated ID field for indexing purposes. In the case of daily values, two additional fields are

provided for the quality control functionality. A data flag is provided to indicate if a value is synthetic,

meaning that it was generated as a result of execution of the algorithm rather than being directly

reported for the station. In the case of synthetic data, the original reported value is also provided.

Transient Data Model

The general structure of climatic data discussed above and the results they are used to produce

are largely temporal in nature; therefore, the transient climate data model in FIRM is largely structured

around the mapping of numerical values to time units. In order to effectively allow the generalized use of

this data as both input to and output from models in the system, a generalized set of operations for

traversing temporal sequences is paired with the mappings to form the basis of a majority of framework

operations.

Access to the persistent climate data model is accomplished by components through SQL.

Components must bind directly to a data source containing persistent climate data model schemas and

build queries, extracting the data from SQL data types provided by the Java Database Connectivity (JDBC)

 46

driver. This activity is supported by framework core foundation services; however it does represent a

lower level access model than will be discussed below for the drought and geographic data models. For

this reason, the transient climate data model does not maintain a 1:1 mapping with the schemas

discussed above. The object specification provided by the transient climate data model describes data

containers with access operations based on common data usage activities.

The resulting data object, the CalendarDataCollection, combines the time unit / value mappings

with operations for traversing the dataset in a uniform way based on calendar arithmetic and structured

around a common unit of data, the weather station. This concept is somewhat abstracted in the

CalendarDataCollection with the data values encapsulated by the object being partitioned by some

unique identifier. In most cases the unique identifier will map to a physical weather station, allowing

computed data results to be easily related to a location and its static data. However, data sets can be

created independent of the persistent climate data model, this generalization being desirable to support

external climatic data sets.

The CalendarDataCollection is an immutable object and is used primarily to pass large quantities

of temporal data between components in the system. An instance contains a data structure to map value

collections to unique locations (weather stations), a starting and ending date for the time sequence, and a

time unit. The time unit is represented by an enumeration in the transient climate data model called a

CalendarPeriod. The enumerable types for this object are DAILY, WEEKLY, MONTHLY, and YEARLY. These

are the only time units recognized by FIRM. The CalendarDataCollection implements java.lang.Iterable, by

implementing this interface its contents are easily traversed in a time-wise linear fashion. The

CalendarDataCollection wraps an internal data object of type java.util.Map<String, Float[][]>, extending

the map to provide several domain-specific operations. One of the main drivers for the immutability of

the CalendarDataCollection is the time unit mappings. Changes to the time unit definition at runtime

could invalidate the state of the object by creating an inconsistency between the defined data array and

the internal time unit. An instance of the object is created for a single set of time sequenced data. The

data are sequenced based on one of the transient climate data model time units; this is used to inform

the state of the CalendarDataCollection when it is instantiated, being used to compute the expected array

 47

length for the internal data container. The lengths are statically defined in the framework to allow

normalized parsing of the data and conform to the Gregorian calendar. The following example

demonstrates how data can be read from a CalendarDataCollection instance and output to the console.

Figure 12: A CalendarDataCollection iteration example

For a single station, the above example would generate the following console output.

Figure 13: Example FIRM output

 The CalendarDataCollectionprovides methods for converting the data values as they are iterated

over. Two common methods allow conversion between English and metric units: convertToEnglish() and

convertoMetric(). There are also methods that allow a classifier to be added that will convert values

between domains. If an instance of the DataClass interface is provided, the CalendarDataCollection will

return the result of the single interface method DataClass.classifyValue() on each call to obtain a data

Container created for token: FIRM_BASE

[FIRM (codename Thresher) version 1.0.20080618.1-R]

--- 254739 ---

2000: -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -9999.000000 -

9999.000000 -9999.000000 -9999.000000 -9999.000000 0.530000 0.430000

2001: 0.520000 1.440000 0.990000 2.340000 9.600000 2.860000 1.220000 1.410000 5.760000

1.200000 1.680000 0.120000

2002: 0.390000 0.380000 1.070000 2.440000 4.870000 0.160000 1.130000 7.730000 1.900000

5.050000 0.140000 0.000000

2003: 0.250000 1.310000 0.710000 1.780000 3.440000 5.870000 1.220000 1.170000 3.540000

1.250000 2.180000 0.400000

2004: 0.960000 0.950000 2.780000 0.860000 3.010000 3.240000 2.660000 1.750000 2.910000

0.350000 2.510000 0.410000

2005: 0.700000 2.130000 0.560000 2.010000 2.030000 2.050000 4.420000 2.470000 0.260000

2.390000 1.710000 0.150000

publicclassCalendarDataRead {

 publicstaticvoid main(String[] args) {

 try {

 ...

 CalendarDataCollectioncdc = ...

 for (String station : cdc) {

 System.out.printf("\n--- %s ---\n", station);

 intcurrent_year = cdc.getBegin().getYear();

 for (float[] year : cdc.getStationData(station)) {

 System.out.printf("%d: ", current_year++);

 for (float value : year) {

 System.out.printf("%f\t\t", value);

 }

 System.out.printf("\n");

 }

 }

 } catch (Exception e) {

 e.printStackTrace(System.err);

 System.err.println("Execution halted");

 }

 }

}

 48

value. This allows for type mappings to be provided at runtime to modify the values contained by the

CalendarDataCollection. Common uses of this functionality could include classifications for spatial

mappings. Rules like ‘precipitation from 0.0 – 1.5 in. => 0’ can be added so that data ranges can be

represented uniformly across space (e.g. as a color range on a map). Different classifiers can be applied at

runtime over multiple iterations, allowing the same data to be represented in multiple ways. The

underlying data state of the object is not changed by applying a classification, preserving the immutability

of the object.

The CalendarDataCollection includes several methods for data extraction beyond those provided

by the iterator. The entire data matrix for any given station can be obtained by calling the

getDataMatrix() method. This method wraps the get() method of the internal map, taking the key value

as an argument and returning the mapped result. By using this method a caller may modify
6
 the data

contained in the CalendarDataCollection for use in other processes. The CalendarDataCollection also

provides a method to extract a fixed data point from each station and augment it with metadata. This

method is useful for generating spatial representations of data points, providing a convenient way to

generate a SiteList. A SiteList contains a single data value for a point (station) and several pieces of

metadata for a given location, with latitude and longitude being mandatory. This object can be passed to

the spatial components of the framework to generate visualizations of data contained in the

CalendarDataCollection for a fixed point in time over space. These various operations support the

generalized nature of the CalendarDataCollection by allowing it to be easily integrated across the

component model of the framework.

TheCalendarDataCollection implements a protected constructor and can only be created legally

in the framework by a PeriodOrderedDataBuilder. The PeriodOrderedDataBuilder object encapsulates the

calendar operations for the creation of collections of values matching the temporal unit definitions

implicit in the domain. These calendar rules allow data collections to be stored in normalized ways across

6
 As an immutable object, the CalendarDataCollection returns a copy of the internal data array on calls to getDataMatrix() so that

modifications to the array do not change the state of the object itself.

 49

the framework. The PeriodOrderedDataBuilder object is created when building a data set to be read by

framework components. The object holds state for a single weather station at a time, allowing individual

or collections of values to be added. When instantiated, the PeriodOrderedDataBuilder requires a

temporal period over which the data will be stored as well as the temporal unit to be used. The object

will then compute the expected state (i.e. the number of total expected values for each station). This

computation is done based on the number of temporal units contained in the argument period. FIRM

calendar data are organized by years and must contain a fixed number of values for each year. For this

reason, regardless of the dates used in the temporal period, the PeriodOrderedDataBuilder will structure

its internal storage objects to hold data values from the minimum period of the beginning year to the

maximum period of the ending year. For example, if a PeriodOrderedDataBuilder were instantiated for

daily data from November 22, 1978 to April 17, 2080, the storage range would be from January 1, 1978 to

December 31, 2080. When created, the object will automatically fill data outside of the requested

temporal range with flag values OUT_OF_REQUESTED_RANGE this allows the initial state of the object to

represent the data request. The numeric representation of this flag (-9999) can be seen in figure 12 for

months in the starting year which fall outside of the request range.

 In addition to the internal storage objects, the PeriodOrderedDataBuilder also maintains a

DateTime object whose state corresponds to the data at which the next value will be added. All FIRM

data and component models utilize the Joda Time date API.
7
 The issues with the Java Date and Calendar

objects are well understood and an early design decision was to facilitate greater accuracy and

functionality in the logic described here by using a 3rd party date API. In the previous example, after

adding 5 values to the object, the internal DateTime value would be November 27, 1978. The minimum

and maximum values of this state object are informed by the time unit argument used at the instantiation

of the PeriodOrderedDataBuilder; the time unit is provided by an enumeration instance of

CalendarPeriod. This state allows the PeriodOrderedDataBuilde to determine where in the data array a

newly added value should be placed, moving to the next row in the array at the end of a calendar year.

7
 http://joda-time.sourceforge.net/

 50

Because all values that are passed to the PeriodOrderedDataBuilder map to a date, a date must always

map to the same value in an array for a fixed unit of time. This presents a potential problem in that all

FIRM calendar logic conforms to the Gregorian calendar.

There are several nuances that occur in the Gregorian calendar. The most commonly recognized

is that, in the Gregorian calendar, every 4
th

 year adds an additional day to the year. These so called leap

years place the extra day not at the end of the year but after the 58
th

 day. As a result, the occurrence of

March 1
st

 in a leap year maps to the 60
th

 day of the year and to the 59
th

 day of a non-leap year. To

preclude this date shift that would require that any logic traversing the CalendarDataCollection account

for the leap year, FIRM treats all years as leap years containing 366 days. As data are added to the

PeriodOrderedDataBuilder in a non-leap year, the 59
th

 value added (representing February 29) for each

non-leap year is adjusted to the 60
th

 position, with the 59
th

 automatically set with the flag value

NON_EXISTANT. The flag value is added in place to the data sequence rather than at the end of the year

to allow each date to always fall on the same day of the year.

A second problem is introduced when considering the Gregorian calendar in the context of a fix

unit mapping. The Gregorian calendar view of a week holds that a week is a 7-day period beginning on

Monday. This results in the first week of any year not always beginning on January 1. The first week of

the year is defined in the Gregorian calendar as the first week in which a majority of the days of that week

fall in the next year. A side effect of this system is that a given day of the year will not always fall in the

same week of the year preventing the uniform mapping of a week number to a set of 7 dates. Because

FIRM does not support conversion of values between time units, the inability to uniformly map a week to

a set of dates does not present a problem. The sliding day upon which the first week of the year beings

does, however, result in variability of the number of weeks occurring in a given year.

Every 400 Gregorian calendar years consist of a total of 20,871 weeks. This number is not evenly

divisible by 52, rather it consists of 329 52-week years and 71 53-week years. These 71 so called leap

weeks occur every 5 to 7 years when the last day of the 52
nd

 week of the year falls on December 27
th

 or

earlier. When this occurs, the week after the 52
nd

 still contains a majority of days in the current year;

therefore this week is not the 1
st

 of the next year but the 53
rd

 of the current. In order to normalize the

 51

number of weeks in a year for uniform data array length, FIRM treats every week as having 52 weeks.
8

While this decision does not impact the addition of weekly values to a PeriodOrderedDataBuilder
9
 it does

pose a problem when summarizing daily values to weeks in that a week of values is excluded 71 times out

of 400.

The PeriodOrderedDataBuilder is supported by the CalendarDataParser to summarize sequences

of one time unit to another. The CalendarDataParser partitions daily or weekly data into monthly or

weekly blocks, allowing individual period values, summations or averages to be returned. This class can

be used as an input filter to the PeriodOrderedDataBuilder to create various data summaries used by the

component model of the framework. An instance is created with a period starting date, period ending

date, and a 1-dimensional array of data values, one value for each time unit in the period. Like the

PeriodOrderedDataBuilder, the CalendarDataParser maintains an internal DateTime to indicate the

current calendar position of the data. The caller uses a set of methods to extract composite values from

the initial data array. These methods map to the time units defined by the CalendarPeriod enumeration.

For example, getNextWeekAverage() would return the average of the next calendar week from the

current date position. For daily values, the CalendarDataParser would sum or average k entered values

where k represents the number of days in the month. The CalendarDataParser will automatically adjust

for flag values like NON_EXISTANT based on its DateTime state. It is in this object that the fixed weeks per

year utilized by FIRM poses a problem.

To account for leap weeks, the CalendarDataParser will treat the 52
nd

 week of a year containing a

leap week as a 14-day week, combining the 52
nd

 and 53
rd

 weeks. The values for each unique day of the

8
 In retrospect as this thesis was being prepared this decision was determined to be a mistake. The implementation of FIRM should

treat all years as having 53 weeks with the NON_EXISTANT flag being used in years which do not contain a leap week. This approach
would have allowed for greater consistency in the model and would prevent the obfuscation of summarized data values that will be
presented below. The main driver for the fixed 52 weeks per year was to address the expectations of researchers verifying data
summaries provided by FIRM. The standard expectation in the agricultural community is that of a 52-week year. This expectation
could have, however, been easily overcome with and explanation of the data model. Future versions of FIRM should be updated to
introduce greater consistency within the domain data model.
9
 This statement assumes that the data values being added conform to the FIRM view of a fixed 52-week year (i.e. only 52 values will

ever be added for a given year). If they do not, in those years that would otherwise contain a 53rd week, a data error will occur as
the expected values state of the CalendarDataCollecion is computed with 52 weeks for each year. While this does not introduce any
data errors if the assumption holds (as it does in the framework implementation), it is further support of the inaccuracy of this
approach as described in footnote 7.

 52

week are then averaged to create a composite 7-day 52
nd

 week. This approach was taken to allow the

inclusion of all data in a fixed 52-week year. Due to the general lack of variability for precipitation and

temperature during this period, this approach was deemed to have the least impact on the generation of

weekly time series data while allowing the data to conform to the fixed week year.
10

 In addition to the

concatenation of leap weeks, the CalendarDataParser also creates summaries based on the week number

calculated from a date. For example, consider the date Tuesday August 19, 2003, which fell on the 231
st

day of the year in the 34
th

 week of the year. A summary of weekly data including this day would include

data from beginning on the previous Monday (day 230) and ending on day 236. Using this method to

calculate weekly summaries for the entire year of 2003 would require 2 values provided from the previous

year; this is because January 1, 2003 occurred on a Wednesday. Additional methods
11

 were considered

for weekly summaries and rejected as they did not allow for sequentially processing data based solely on

a data stream and a DateTime object. The following is an example of building a CalendarDataCollection

using the CalendarDataParser to generate weekly summations.

10
 This approach was not quantified statistically when originally made in the implementation of the data model. It is, however,

known that the assumption of minimum variability does not hold for data from the Southern Hemisphere. FIRM contains data for
only the Northern Hemisphere.
11 The three methods considered where the ‘Natural’ approach (chosen), the ‘Fixed Year’ Approach, and the ‘Sliding Scale Approach’.
The ‘Natural’ Approach for summarization of weekly data will take a day, and provide a summation of the daily values from the first
day of the week in which the value falls to the last (i.e. +7 days). Considering August 19, 2003, a weekly summary will be the sum of
values from day 230 - 236. In the ‘Fixed Year’ Approach the calendar will be ‘normalized’ such that the first day of the first week of
the year will fall on January 1, resulting in a given date always falling in the same 7-day period. Again considering August 19, 2003, in
a ‘fixed’ year the date occurs in week 33. A weekly summary would include values from day 225 – 231. In ‘Sliding Scale’ Approach
the concept of a week is shifted based on the selection data from a given dataset. In the August 19, 2003 example using the ‘Sliding’
Approach would result in the date being the first (or last) day of the period and taking the following (or previous) 7 values for the
summary. A weekly summary would include the values from 231 – 237 (or 225 – 231). Each result yields a different summary set,
and each method can be used to produce ‘correct’ results provided it is consistently applied across all calculations in the framework.

 53

Figure 14: Example data summation code

 Working in concert, the CalendarDataCollection, PeriodOrderedDataBuilder, and the

CalendarDataParser allow for data sequences to be mapped to daily, weekly, or monthly time units

conforming to Gregorian calendar rules. The encapsulation of logic for manipulating data sequences

based on a calendar system facilitates normalized component interaction and comparable data results.

The rules encapsulated by these three objects represent the basis for nearly all calculations in FIRM and

were heavily scrutinized during development.

 The persistent climate data model describes both time sequence data and the location data

around which the time sequences are group. In the persistent climate data model these location data are

treated as metadata for locations (weather stations) and are paired with the time sequence data through

the locations. The transient climate data model encapsulates these data through a generic object called

the MetaDataCollection<T>. Like the CalendarDataCollection, the MetaDataCollection<T>maintains a

mapping of data to stations by unique identifier. A key difference in this object can be reused to describe

metadata organized around collection points. In order to enable this reuse, the MetaDataCollection<T>

object is a generic. In the transient climate data model the MetaDataCollection<T>is typed to

DateTime start = newDateTime(2000,1,1,0,0,0,0,GregorianChronology.getInstance());

DateTime today = newDateTime(System.currentTimeMillis());

// create a data builder to compute the number of days in the period. NOTE:

// this number of days must be computed according to FIRM logic and not just

// the standard calendar.

YearDataBuilderdaily_builder = newYearDataBuilder(start, today, CalendarPeriod.DAILY,

 DataType.UNKNOWN);

intlen = daily_builder.getExpectedValues();

System.out.printf("This builder expects %d total days of data\n", len);

// create a flat array of daily values

float[] daily_data = newfloat[len];

for (inti=0; i<len; i++) {

 daily_data[i] = rand.nextFloat();

}

// create a data builder to hold weekly summarized data from the array above

YearDataBuilderweekly_builder = newYearDataBuilder(start, today, CalendarPeriod.WEEKLY,

 DataType.UNKNOWN);

System.out.printf("This builder expects %d total weeks of data\n",

 weekly_builder.getExpectedValues());

CalendarDataParser parser = newCalendarDataParser(daily_data, start.getYear(),

 start.getMonthOfYear(),

 start.getDayOfMonth());

weekly_builder.openStation("Example Station");

while (parser.hasNextWeek()) {

 weekly_builder.add(parser.nextWeekSum());

}

weekly_builder.writeStation();

returnweekly_builder.returnCollection();

 54

MetaDataType, an enumeration of possible metadata types defined by the persistent climate data model.

The MetaDataCollection<T>maintains data with two internal data structures to support its operations.

The first is a mapping of metadata to unique identifier; this object is of type java.util.HashMap<String,

Map<T, Object>>. The internal sub map, a collection of the metadata for a given unique ID, is itself a

mapping of the data value to a typed enumeration, in this case a MetaDataType.

 The MetaDataCollection<T> object implements java.lang.Iterable<String> to allow traversal in

much the same way as the CalendarDataCollection. The object will iterate over the unique keys in its

internal map, setting the object state to the current ID. The getMetaData() method will then return the

metadata value of the argument type for the current station. The metadata map for an entire station can

be extracted (while iterating or not) by calling getStationMetaData() and passing the unique ID of the

station as an argument. The following is an example code snippet showing how to iterate over

aMetaDataCollection<MetaDataType>.

Figure 15: Example metadata iteration code

The following output would be displayed from running the code in Figure 16.

publicstaticvoid main(String[] args) {

 try {

 ...

 MetaDataCollection<MetaDataType>metadata ...

 DateTimeFormatter formatter = DateTimeFormat.forPattern("MMM dd, yyyy");

 for (String station : metadata) {

 System.out.printf("\n--- %s ---\n", station);

 System.out.printf("Station Name: %s\n",

 metadata.getMetaData(MetaDataType.STATION_NAME));

 System.out.printf("Runs from: %s to %s\n",

 formatter.print((DateTime)metadata.getMetaData(MetaDataType.START_DATE)),

 formatter.print((DateTime)metadata.getMetaData(MetaDataType.END_DATE)));

 System.out.printf("Located at: lat=%f lon=%f\n",

 metadata.getMetaData(MetaDataType.LATITUDE),

 metadata.getMetaData(MetaDataType.LONGITUDE));

 }

 } catch (Exception e) {

 e.printStackTrace(System.err);

 System.err.println("Execution halted");

 }

}

 55

Figure 16: Example FIRM output

 The MetaDataCollection<T> object also provides methods for building the collection; these are

not separated out as they were for the CalendarDataCollection
12

. Like the PeriodOrderedDataBuilder,

data is added to the collection by first creating (opening) a new station. Metadata is then added by calling

the add() method; metadata are added a single <T>type at a time. Internal state is maintained by the

object throughout the add process, a station is completed by calling writeStation(). Operations will throw

an InvalidStateException if the state of the object is not correct for adding data. Data can optionally be

imported as an entire collection for a given type with the importMap() method. This method will add the

typed value for each station in the argument Map<String, Object> for an argument type <T>. Stations not

contained by the collection at the time are added. Finally, a single metadata type can be extracted across

all stations using the extractType() method.

 The MetaDataCollection<T> object also provides operations to modify the contents of the

collection on display. The order over which the stations are iterated can be modified by attaching a

sorted list of station IDs with the attachedSortedStationList(). Calling this method updates the object

state forcing all calls to iterator() to use the sorted list rather than the keyset. This functionality allows for

runtime control of station display logic, providing lists sorted by state, or county in which the station is

located. The transient climate data model provides an object for performing simple boolean operations

on collections of metadata. The MetaDataCollectionEditor<T> provides basic and, not, or operations. The

object maintains a typed reference to a MetaDataCollection<T>, which is updated by the operations

12 This represents an inconsistency in the model that is scheduled to be addressed in a future update to the framework.

Container created for token: FIRM_BASE

[FIRM (codename Thresher) version 1.0.20080618.1-R]

--- 375215 ---

Station Name: NEWPORT ROSE

Runs from: Nov 23, 1957 to Dec 31, 2003

Located at: lat=41.500000 lon=-71.349998

--- 379327 ---

Station Name: WOOD RIVER JUNCTION

Runs from: Apr 01, 1938 to Sep 30, 1948

Located at: lat=41.432999 lon=-71.699997

 56

provided on the editor. This functionality is included as a convenience object to support search

operations in application models.

 The transient climate data model also defines several classes for describing climate variables.

The VariableMetaData class is one such object and is used to encapsulate the specific metadata

associated with a variable rather than a station. Variable metadata generally includes the type of data

(defined globally in the framework by the DataType enumeration), and the dates for which values of the

type are reported. Weather station reporting ranges for a given data type often contain gaps in reporting,

these gaps are represented in the VariableMetaData as the percent of data missing over the data range

described by the metadata. The second variable related class that is defined for the model is the

VariableFilter class. This class is used by component callers to define parameters describing reporting

ranges. The class has fields for a period over which values should be reported, the DataType of value that

is reported and the percent of missing data that can be tolerated. The natural language description of

data encapsulated by a VariableFilter could be ‘all stations reporting precipitation from November 8, 1920

thru December 15, 1935 with at least 75% accuracy’.

DROUGHT DATA MODEL

 The primary risk factor analyzed by FIRM components is drought. The climate data accessible

through the framework are most often utilized by framework components to compute drought indices. A

drought index is a model for computing some quantification of drought based on climate indicators

[14,15,16,17,18]. These data themselves are generally structured as time sequenced data matching the

time unit from which they were computed. Researchers, decision makers, and agricultural producers use

these data to assess the severity of drought historically in a region, providing an augmented picture of the

climate; these data represent information in the decision support system and are computed by

components rather than archived in the system.

 FIRM also provides access to anthropogenic drought data sets. These are structured data

describing events that can be associated with drought. These so-called drought reports are used in

conjunction with drought index data to provide a more complete view of the effects of climate on a

 57

landscape and can serve as an invaluable resource to further quantify a drought index value or as an early

indicator of drought.

Persistent Data Model

 As information in the framework, FIRM does not represent drought index data in a persistent

model, for this reason the persistent drought data model describes only drought index data and

relationships. Drought index data are organized into individual units called reports. Reports take the

form of user, media or impact. A user report describes an event or occurrence that can be attributed to

drought submitted by a user of the system
13

. A media report contains the same basic information found

in a user report but is sourced to a media outlet; generally these data come from regional newspapers.

The third report, the impact report, represents a collection of media and user reports and represents a

specific impact that can be attributed to drought. An impact is generally a single event or occurrence that

may be described by several reports. The following diagram depicts the relationships between data

elements in the model.

13
 User submitted drought impact reports (indeed all drought impact data) do not originate from applications built on FIRM.

Although FIRM APIs do exist for the creation of drought report data, application models do (and should) not expose the functionality
to users. All drought impact report data comes from the Drought Impact Reporter (http://droughtreporter.unl.edu), a drought data
tool developed and provided by the National Drought Mitigation Center (http://drought.unl.edu). Through a collaborative
partnership with the NDMC, FIRM is able to access the data for inclusion in framework components.

http://droughtreporter.unl.edu/
http://drought.unl.edu/

 58

Figure 17. Persistent drought data model relationships

Each report type in the model can have multiple categories associated with it. Category types are defined

by the data source and include: agriculture, water supply and quality, energy, tourism, business and

industry, plant and wildlife, wildfire, disaster declaration, society and public health, relief restriction,

general and other.

 The following tables describe the table schema provided by the persistent drought data model.

Tables for media, user, and impact all maintain common elements to indicate the beginning and ending of

the event or occurrence associated with the drought. These metadata for the report are not mandatory

with the beginning date matching the entry date and the ending date matching the beginning if none is

provided.
14

 As a result, all reports can be queried temporally. Each report type also maintains a flag to

indicate that any loss, if present, can be published. Setting this flag to false indicates that any client

14
 This convention is enforced by the system from which the data originates and is not a function of FIRM.

 59

displaying the data should not display the loss data. Loss data is associated with specific report categories

and is a field of the category and not the report itself. The aggregate loss for a report is the total of all

category losses.

Field Description

media_report_id The model generated primary key.

source The news outlet from which the report was taken.

publish_loss A flag indicating that a dollar loss associated with the report can be published.

full_text The full text, summarized15.

story_reference The URL, if available, to the original story.

begin_effect The date attributed to the beginning of the impact described by the report.

end_effect The date attributed to the ending of the impact described by the report.

legacy_id The ID of the report in the source database. Included for reference purposes.

publication_date The date of publication of the original news article.

headline The news story headline.

Table 11. A description of the media_reports table.

User reports include information beyond the standard report information found in the media and

impact report definitions. Because a specific user of the system enters a user report it includes

information about the user. This information is used by the originating system to identify individuals

entering reports for verification purposes and is not published. As a component of the data model, FIRM

incorporates this information to maintain data parity with the system from which the data is taken. The

user data are not normalized in the model in order to prevent the need for registration when creating

reports. This results in significant data redundancy. The general FIRM model would incorporate user data

as part of the core foundation services Identity entity, allowing the data to be properly normalized across

the models in 3NF.

Field Description

user_report_id The model generated primary key

15
 For copyright purposes a media report contains a summary of the actual article text. The original article text is only referenced

through the story reference.

 60

reporter_city The reporter’s city.

reporter_email The reporter’s email address.

description A description of the event or occurrence.

reporter_name The reporter’s name.

publish_loss A flag indicating that a dollar loss associated with the report can be published.

reporter_org The reporter’s organization.

begin_effect The date attributed to the beginning of the impact described by this report.

reporter_phone The reporter’s phone number.

reporter_state The reporter’s state.

reference_url A reference URL to more information provided by the reporter.

reporter_address The reporter’s street address.

legacy_id The id of the report in the source database. Included for reference purposes.

reporter_zip The reporter’s zip code.

date_submitted The date on which the report was submitted.

end_effect The date attributed to the ending of the impact described by the report.

title The report title.

Table 12. A description of the user_reports table.

 Impact reports are designed to be collections of media and user reports. As a result of this

relationship the impact report fields should be dynamically computed by aggregating all matching data

from the contained reports. For example, the total loss for a specific impact is the sum of all category

losses of all media and user reports under the impact. Dates should be likewise computed with the

exception of the entry date. Human reviewers moderate all report data and impacts are entered in the

system when a media or user report that does not describe any other impact is published. The entry date

is therefore not an aggregate value. The moderator also enters the description and title when the impact

is created.

Field Description

impact_report_id The model generated primary key

impact_url The URL of a reference site for the impact.

publish_loss A flag indicating that a dollar loss associated with the report can be published.

title The title of the report.

 61

legacy_id The id of the report in the source database. Included for reference purposes.

impact_start The date attributed to the beginning of the impact described by the report.

entry_date The date on which the impact was entered.

description A description of the impact.

impact_end The date attributed to the ending of the impact described by the report.

Table 13. A description of the impact_reports table.

This structure for impact reports suggests that many of the fields seen above should appear in the

transient view of the data as opposed to the persistent. That is not the case due to a bridge between two

model versions of the impact reports. At the time of development (and continuing to the time of this

writing) the originating system exists in a state of transition between the multiple report-typed-models

shown here and a single report (impact) model. The data model that is used to incorporate this data in

FRIM digests the data in the legacy format, separating off media and user reports. For this reason many

of the aggregate values for impacts must appear in the persistent model and are set on initial data import.

Standard link tables are used to related impacts with media and user reports.

Field Description

media_report_id The model generated primary key

impact_report_id The reference ID of an impact report.

Table 14. A description of the media_impact_link table.

Field Description

user_report_id The model generated primary key

impact_report_id The reference ID of an impact report.

Table 15. A description of the user_impact_link table

 Report categories provide a categorization for a repot type and the dollar loss, where applicable,

associated with the event described by the report. The table maintains the category as a numeric value

that maps back to the available category types paired with a loss value. These data are paired with the ID

of the parent report, mapping back to one of the report typed tables. Since the category names are not

provided in the persistence model, it is possible that the category data could become inconsistent if

incorrect values are provided for the category or if the category value definitions change. This issue is

dealt with through the transient data model as discussed below.

 62

Field Description

category_report_id The model generated primary key

dollar_loss The dollar loss, if any, associated with the category.

impact_category A numeric value that maps to one of the static category types for reports.

user_report Reference ID to a user report.

media_report Reference ID to a media report.

impact_report Reference ID to an impact report.

Table 16. A description of the report_category table.

Transient Data Model

 The transient drought data model is considerably less complex than the transient climate data

model. Many of the entities defined by the persistent drought data model map 1:1 to entity objects in

the transient model, those that do not are computed time sequence data and utilize the

CalendarDataCollection for encapsulation. The 1:1 mapping of persistence to transient data mappings is

facilitated by the Java Persistence Architecture (JPA). JPA is enabled by the core foundation services

where the entity management functionality if configured and maintained. As a result, any implementing

transient data model may be used in the definition of the persistent data model through JPA. In this view

of the transient model entities are represented as Java Beans whose fields are annotated with data

relationships. The JPA entity manager automatically synthesizes the persistence definitions (i.e. the SQL

structure) and manages all persistence operations: create, read, update, and delete (CRUD). Since the

class definitions are used in the generation of the persistent data model which was previously described

and the objects are simply transient views of the underlying persistent data, the following transient

drought data model entities map to the corresponding definitions in the persistent model: UserReport,

MediaReport, ImpactReport, ReportCategory. Each of the three report objects is represented trannsiently

by an entity of one of the following types: UserReportBean, MediaReportBean, and ImpactReportBean.

Each of these three entities extend the BaseReport class. This extension is done in order to support CRUD

operations in the components as discussed in Chapter 5. The purpose of this super class is to provide

fields that are not present in the persist data model at runtime to components; namely, a boolean flag to

indicate if the object is persisted (tied to a persistence context).The transient drought data model defines

 63

several entities, which are not persistent. These entities are used to support computation of drought

index values and CRUD operations on drought reports.

 In order to prevent data integrity issues in the impact category field of the report category table,

the transient drought data model introduces an enumeration of all possible category elements. The

enumeration, ImpactCategory, incorporates the ordinal of each enumeration instance, and serves as the

category value in the persistent state. The later discussed component model then utilizes the

enumeration to ensure data integrity in the persisted data. The drought report entities are

complemented by two transient entities designed to support query operations. The primary object is the

ImpactQueryResult. Like the CalendarDataCollection defined in the transient climate data model, the

ImpactQueryResult encapsulates a set of methods for working with a collection of ImpactReport objects.

 The ImpactReport object represents the entry point into drought report data. Since all

MediaReport and UserReport objects belong to an ImpactReport, higher-order system functions access

the objects through the ImpactReport as opposed to directly. The ImpactQueryResult allows collections of

ImpactReport objects to be grouped based on common query operations. The component model defines

specific operations. The ImpactQueryResult provides common traversal operations on the object

collection and is therefore java.lang.Iterable. The object maintains two internal collections of type

ShadowImpact and ReportPlot. These two collections support all of the object operations.

 The ShadowImpact is a ‘light weight’ view of the ImpactReport. Since the ImpactReport is a JPA

entity, an instance may contain a large object graph of related media or user reports, spatial references,

and categories, the ShadowImpact is provided as a ‘display object’. A ShadowImpact encapsulates the

basic fields of an ImpactReport, a collection of ReportCategory objects, and the unique ID of the

ImpactReport it represents. All query operations populate these ShadowImpact objects by calling directly

to the persistent model instance (i.e. using SQL). If the full object graph is required for display or edit, the

entity is loaded using JPA CRUD operations. This object allows the data to be easily displayed as a query

result while maintaining the ability to load the complete object.

 The ReportPlot represents a summarized spatial view of the ImpactReport collection. The object

maps SpatialReference objects to ShadowImpact collections, subdividing the collection maintained by the

 64

ImpactQueryResult based on some geo-political boundary entity.
16

The ReportPlot allows ShadowImpact

objects to be added to a geographic unit in much the same way as the PeriodOrderedDataBuilder allows

time series data to be added to a weather station. Object state is represented as a current

SpatialReference and as ShadowImpact objects are added statistics for the SpatialReference are updated.

An example usage would be to define a SpatialReference for the state of Nebraska (the plot) and add

ShadowImpact objects for Nebraska to the plot. As these objects are added category counts, total dollar

losses, and effect boundary dates are updated. The result is that collective report data can be aggregated

to a specific spatial extent.

 The ReportPlot defines methods for iterating over the ShadowImpact collection based on the

spatial partitions. The partitions can be iterated over, or based on a specific category, allowing the

ReportPlot to partition the ImpactReport view by category or spatial reference. The ReportPlot also

defines methods for accessing statistical data for each plot. This object is used by the ImpactQueryResult

to control the iteration of the ShadowImpact. The ReportPlot implements a protected constructor and

can only be created while building an ImpactQueryResult object. The organization of ShadowImpact

objects into plots is the standard interaction model for the ImpactQueryResult. The unorganized

collection of ShadowImpactobjects can be obtained from the impactList field. The following is an example

use of the ImpactQueryResult object.

16
 SpatialReference objects and their function are discussed in the next section.

 65

Figure 18: Example drought report iteration code

The following output is produced by the above code.

Figure 19: Example FIRM output

 Data that are output from the drought index components, discussed below, generally utilize the

CalendarDataCollection. The exception to this is the Newhall Simulation Model, a drought index used to

quantify drought based on soil taxonomies. The organization of the data generated by the Newhall, while

time sequenced, are not single data values but several collections of values. In order to accommodate

these data values the transient drought data model defines the NSMSummaryDTO and

NSMCompleteDTO. Each of these objects conform to the Java Bean pattern and encapsulate several

collections of data values and soil taxonomy definitions for each type of Newhall operation: complete and

Container created for token: FIRM_BASE

[FIRM (codename Thresher) version 1.0.20080618.1-R]

--- Plot Report Data ---

Plot Name: Search Result Plot

Report Categories:

Category: Society and Public Health

Percent in plot: 0.920000

Category: Other or Unclassified

Percent in plot: 0.080000

Reports:

Report Title A pastor in Cullman invites residents and leaders ...

Report Title A prayer service was held at Mount Olive AME Zion ...

Report Title Alabama’s Governor Bob Riley has declared that Jun...

Report Title An ancient Jewish prayer ritual will be held at th...

Publicstaticvoidmain(String[] args) {

 try {

 ...

 ImpactQueryResult result = query.searchAllReports("Prayer");

 for (ReportPlot current_plot : result) {

 System.out.printf("\n --- Plot Report Data ---\n");

 System.out.printf("Plot Name: %s\n", current_plot.getPlotName());

 System.out.printf("\tReport Categories:\n");

 for (ImpactCategory cat : current_plot.categories()) {

 System.out.printf("\t\tCategory: %s\n",

cat.getPrintName());

 System.out.printf("\t\tPercent in plot: %f\n",

current_plot.categoryPercent(cat));

 }

 System.out.printf("\tReports: \n");

 current_plot.iterate();

 while (current_plot.next()) {

 System.out.printf("\t\tReport Title %s\n",

current_plot.getImpactTitle());

 }

 }

 } catch (Exception e) {

 e.printStackTrace(System.err);

 System.err.println("Execution halted");

 }

}

 66

summary. The data values contained in each object are numeric (float) values organized by time unit, soil

taxonomy names (string), and enumerated values belonging to the SoilMoistureRegime,

SoilMoistureRegimeSubDivision, or SoilTemperatureRegime enumerations. This collection of class

definitions is specific to data from the Newhall computations and does not serve any reuse value within

the framework. These definitions are provided for a single object result type for operations of the

Newhall component.

GEOGRAPHIC DATA MODEL

 Underlying all of the data in FIRM is a spatial property. In the climate data model the temporal

data are organized by weather station, allowing the data to be modeled spatially. Drought data are also

linked spatially whether through weather station for which they are computed or for regions in which

they are reported. In order to accommodate this and to allow data to be related to the ecosystems that

they describe, FIRM partitions spatial data, modeling it as a first-class element. Ecosystem data as well as

domain-generalized spatial data are modeled collectively as geographic data. These data include geo-

political units (like cities, counties, or states), land usage, soils, and agricultural statistics. In general, these

data crosscut the domain specific decision support data and are used by the framework to transition data

to information or information to knowledge.

 The spatial aspects of the geographic data model ate strongly coupled with the spatial

components provided by the core foundation services. These data were originally intended to be

included directly in the service model for the system. Many of the spatial data types, while not specific to

the decision domain being considered, are structured around domain concepts. As a result, it becomes

difficult to reuse the spatial data model in its entirety in unrelated domains. For this reason, the

framework includes the spatial data model as part of the domain rather than service data model,

tolerating a certain amount of data reuse between domain implementations of the framework.

Persistent Data Model

 The persistent geographic data model differs from the previously discussed persistence models in

that the data it describes are realized both relationally and spatially. As a result of this, the

 67

implementation of the model exists both as a relational database (SQL) and a geospatial information

system (GIS) storage engine (SE). In the case of the geospatial storage engine, the data are partially

maintained in a relational structure; however that structure alone is insufficient for reasoning about the

data. The following diagram illustrates the relational persistence model for the geographic data model in

FIRM.

Figure 20. Persistent geographic data model relationships

This relational model is designed to facilitate spatial views of other model data in FIRM by linking non-

spatial elements with spatial structures. This model can be thought of as a bridge between a non-spatial

relational model and a fully spatial GIS model. These tables allow data that are not accessible to the GIS

system to be defined in such a way that they can be augmented with purely spatial data and manipulated

by GIS components. The following tables describe the schema and its use in creating a spatial view of

data.

 The persistent geographic data model is defined to incorporate elements of spatial locality and as

a result contains definitions for several common geo-political units common to FIRM data. The tables

below show the field definitions used to describe US cities, zip code areas and counties. US states are not

 68

included as part of the persistent data model but are represented by numeric values. This design decision

mirrors that for drought report categories with the same potential consequences. The political

boundaries included in the model group boundary identification data with spatial definitions. US cities

are a notable exception as they do not currently include position data.
17

 In general, the geo-political

boundaries define regions in space rather than points; all geo-location data for a region are based on

computing the center point (the centroid) for the region. More exact boundary definitions are delegated

to GIS stores and are linked by core foundation service spatial components.

Field Description

county_id The model generated primary key.

fips_code The full US postal place code for the county, this is a combination of the state and county FIPS.

county_name The name of the county.

latitude The latitude of the county centroid.

longitude The longitude of the county centroid.

county_fips The US postal place code of the county alone.

state A numeric value that maps to one of the static US states.

Table 17. A description of the counties table.

Field Description

city_id The model generated primary key

place_fips The US postal place code for the city.

city_name The name of the city.

county The ID of the county in which the city is located.

ref_id The reference data set ID for mapping cities back to the GIS data set from which they are extracted.

Table 18. A description of the cities table.

Field Description

zip_id The model generated primary key

zip_code The US postal code.

latitude The latitude of the zip code centroid.

17
 This oversight in the model is presently dealt with at the application layer through geo-coding and was identified as a future

update to the model.

 69

longitude The longitude of the zip code centroid.

city The city in which this zip code is defined.

Table 19. A description of the zip_code table.

 Non-spatial data are spatially related to the geo-political boundaries discussed above through

spatial references. A spatial reference links any other data element in the FIRM data model to a zip code,

city, county, state, or other geographically bounded region. The table definition includes fields for the

reference table as well as the reference ID. These fields allow the definition to facilitate spatial

referencing even in the event of new entity definitions in the persistent model. A side effect of this

generalization is that invalid reference data can be provided, leading to orphans in the instantiation of the

data model. Checking against this is left to the component model.

Field Description

ref_id The model generated primary key

state A value mapping to the static list of US states. Set if the type is a state reference.

ref_type Indicates the type of reference is described by the data, values can be zip code, city, county, state, region.

ref_object_type The table name containing the referencing object.

ref_object_id The id of the referencing object.

box_id An regional id matching the spatialregion schema.

Table 20. A description of the spatial_reference table.

In the definition of a spatial reference, states and spatial regions are explicitly defined as fields. As was

previously discussed, states do not have a definition in the persistent model and therefore are referenced

only by the numeric value associated with the state. Spatial regions can be defined for arbitrary

boundaries defined by the persistent model; they are explicitly defined as they reside in the same model.

Spatial references encapsulate the coordinates of the north/east and south/west corners of a bounding

box, allowing regions in space to be defined by components and associated with other entities in the

model. The region may be defined for any coordinate system supported by FIRM.

Field Description

box_id The model generated primary key

north The maximum latitudinal bound of the box.

east The maximum longitudinal bound of the box.

 70

ssuth The minimum latitudinal bound of the box.

west The minimum longitudinal bound of the box.

coord_system The coordinate system used for the bounding values.

Table 21. A description of the spatial_regions table.

Standard link definitions are included in the definition to link reference data to the appropriate geo-

political entities.

Field Description

reference_id The model generated primary key

zip_id ID of the reference zip code.

Table 22. A description of the reference_zip_code_link table.

Field Description

ref_id The model generated primary key

city_id ID of the reference city.

Table 23. A description of the reference_city_link table.

Field Description

ref_id The model generated primary key

county_id ID of the reference county.

Table 24. A description of the reference_county_link table.

Transient Data Model

 Because many of the spatial operations provided by FIRM are delivered through the core

foundation services, the transient geographic data model consists of few definitions. As was the case with

the transient drought data model, the objects described by the transient geographic data model provide

JPA mappings to the persistence model. As a result, the model definitions from the persistence model

map directly to the object definitions of the transient model. A full description of each object and its use

would be redundant. The transient geographic data model defines the following objects:

SpatialReference, BoundingBox, USZipCode, USCity, USCounty, USState, SpatialReferenceType. The

SpatialReferenceType and USState objects are enumerations of all possible values for which they describe.

They are used to ensure data consistency in the persistent model ensuring correct value by mapping

 71

enumeration ordinal values to the type fields of the SpatialReference definition. The BoundingBox object

represents an instance of the spatial region definition defined above.

 The transient geographic data model does provide one class definition that does not map to the

persistent model. The SpatialFrequency class defines fields and methods to tie spatial classifications to

periods of time, modeling change over time. Map data contained in a spatial engine, like Arc GIS Server,

may have classified regions indicating some event, attribute or occurrence. These classifications would

appear on a cartographic representation of the data as colored or shaded regions. An example could

include coloring Lancaster county Nebraska based on the political party winning a presidential election.

That classification may change over time; the SpatialFrequency class allows that change to be captured by

showing frequency of a given classification (i.e. votes Republican) over a time period. The object

maintains a starting and ending date describing some period, a reference to the underlying map instance

provided by the core foundation services, and a java.util.Map<String, Float> of percentage of region for a

given classification. This object can then be used by the component model to tie frequencies to

geographic bounded regions of any variety.

CONNECTOR ARCHITECTURE

 The FIRM domain data model can be thought of as a connector architecture. The normalization

of data types identified through an analysis of domain models encapsulated by the components facilitates

uniform component I/O. This results in limited data translation on the part of the components, allowing

each to easily digest input to produce output. The result is that a component can be connected directly to

any other component in the system by virtue of some higher-level process defined by a sequence of

component calls. The implicit ‘connections’ that are formed as a result of the domain data model become

the drivers of the application model. This is the primary role of a well-defined domain data model, and is

the central requirement in order for the component model to facilitate data integration.

 With an understanding of the data elements common to this domain one can begin to

encapsulate operations on those data in components. The following chapter discusses the FIRM

component model and how it takes advantage of the domain data model to integrate the disparate data

 72

sets it describes. The inclusion of a component model completes the FIRM architecture and allows for the

development of an application model and higher-level software products.

 73

CHAPTER 5: FRAMEWORK COMPONENT MODEL

 The FIRM component model builds on the domain data model to encapsulate logic and

operations for domain specific processes and methodologies. The component model can be considered

the core functionality of the framework as all client software interacts with the component model to

realize some set of use cases. The FIRM component model is partitioned into service groupings based on

the primary data models realized by each component in the grouping. Below is a diagram view of the

FIRM component model.

Figure 21. The FIRM component model

The four service groupings represented on the diagram above as sections of the circle represent the

domain data classifications found in the data model: climate, drought, and geographic. An additional

component grouping is included for system support; components in this group are responsible for the

functionality of the system as a whole. Central to all components are the core foundation services that

deliver framework functionality to the components and provide access to crosscutting operations.

 The component model is partitioned based around the service offerings of the framework. This

partitioning allows for common configuration and runtime elements to be delivered to components

 74

requiring them. The goal of grouping components under a common component service is to create a level

of abstraction above the components though which clients can interact with the functionality. In much

the same way as multiple table definitions from a data model exist in a single data source, may

component definitions from a component model will exist in a single component service. This

organization allows for broad extension of the component access model in the future.

 The component service organization relies heavily on the Manager/Accessor pattern discussed in

Chapter 3, providing the basis for integration of the component model with the core foundation services.

In the diagram, the interior and exterior small spheres represent the Manager and Accessor classes

respectively. Components in each service grouping have access to Manager functionality to bind them to

the core foundation services, exposing those services to the component. Components are referenced and

delivered by an Accessor to allow clients to bind to them. The unified framework model is derived from

the groupings of components to create service bindings to the core foundation services and clients.

 As is the case with components found in the core foundation services, all components in the

FIRM component model, with the notable exception of native components, are implemented as

Enterprise Java Beans (EJBs). The implementation pattern for EJBs is that each component implements a

Remote and optional Local interface. In the FIRM component model, standard naming conventions are

used for each. The remote interface to the component is always given the component name, for example

MyComponent. The component implementation takes the component name and appends bean to the

end; MyComponentBean. If an optional local interface is also included ‘Local’ is appended to the

beginning of the name; LocalMyComponent. This standard nomenclature allows easy recognition of

components when packaged with other supporting classes.

The remainder of this chapter will focus on the components in each of the service groupings and

their key support classes. FIRM maintains many classes to support the internal functionality of

components that are never exposed to callers. For the sake of brevity a discussion of these support

classes is omitted in favor of only discussing those class not defined in the domain model that are exposed

to clients; as a result, the system support service components are omitted from this discussion. The

discussion will address how each is bound to the corresponding data model to deliver integrated

 75

functionality. An example of a client demonstrating how the components interact to form the unified

framework model can be found in Appendix A.

CLIMATE COMPONENTS

 The climate service is made up of components for accessing data defined by the persistent

climate data model and for computing values based on that data. The service is comprised of two

components, the ClimateDataQuery and the ClimateMetaDataQuery. This service is bound to the core

foundation services with the ClimateServiceManager. The ClimateServiceManager maintains the JNDI

names of persistent climate data model data sources, JNDI connection strings for the component

instances, default values for missing tolerance, and connection information for external data supporting

services
18

. The ClimateServiceManager allows the climate component model to bind to the framework.

The ClimateServiceAccessor allows clients to bind to the climate model components, providing the

getClimateDataQuery() and getClimateMetaDataQuery() methods, each returning an instance of the

ClimateDataQuery and ClimateMetaDataQuery respectively. These interfaces are described in the

following tables.

ClimateDataQuery

Method Description

getPeriodAnnualData The getPeriodData methods are used to access data values contained in a climate data source.
These methods each take a java.util.List containing weather station IDs, two DataTime arguments to
indicate the beginning and ending of the period over which the data should be queried, and a
DataType enumeration to indicate the variable to be queried.

Returns: CalendarDataCollection

getPeriodMonthlyData

getPeriodWeeklyData

getPeriodDailyData

getAvailableAnnualData The getAvailableData methods are used to access all data values within a station record. These
methods take only a java.util.Listof weather station IDs and the DataType enumeration to indicate
the variable to be queried. Since stations do not all have the same historical records the absolute
minimum and maximum date values are computed for the station list,
OUTSIDE_OF_REQUEST_RANGE flags are set for stations that do not have a record reporting within
the entire window.

Returns:CalenadrDataCollection

getAvailableMonthlyData

getAvailableWeeklyData

getAvailableDailyData

getHistoricalAverageAnnualData The getHistoricalAverageData methods are used to compute the average over the entire reporting
record of a weather station. A single year of data is returned containing the averages values for
each unit value, a unit value is implicit in the method (i.e. daily, weekly etc.). The method takes only
a java.util.List of station IDs and a DataType enumeration.

getHistoricalAverageMonthlyData

18
 In this case the external service is the Applied Climate Information System, accessed through a CORBA interface.

 76

getHistoricalAverageWeeklyData
Returns: CalendarDataCollection

getHistoricalAverageDailyData

getAnnualDataNormals The getDataNormals methods are used to compute average values over an argument period of years
for a list of weather stations. A single year of data is retuned containing the normal values for each
unit value, a unit value is implicit in the method (i.e. daily, weekly etc.). The method takes a
java.util.List of station IDs, the first year in the normal period, the last year in the normal period and
a DataType enumeration for the variable to be queried.

Returns: CalendarDataCollection

getMonthlyDataNormals

getWeeklyDailyDataNormals

getDailyDataNormals

getGrowingDegreeDayNormals This method computes average growing degree values over an argument period of years for a list of
weather stations. The method takes a java.util.List of weather station IDs, the starting year of the
normal period, the ending year of the normal period, and the minimum and maximum daily
temperatures for the GDD calculation.

Returns: CalendarDataCollection

getForstFreePeriodNormals This method computes the average frost-free period over a period of years for a list of weather
stations. The method takes as arguments a java.util.List of weather station IDs, the first year of the
period, and the last year of the period. The results are a single value for each year in the period.

Return: CalendarDataCollection

getGrowingDegreeDays This method computes growing degree for a list of weather stations over a time period. The method
takes a java.util.List of weather station IDs, the CalendarPeriod for which the values should be
computed, the starting date of the period, the ending date of the period, and the minimum and
maximum daily temperatures for the GDD calculation.

Returns: CalendarDataCollection

getFrostFreePeriod This method computes the frost-free period for each year over a period of years for a list of weather
stations. The method takes as arguments a java.util.List of weather station IDs, the first year of the
period, and the last year of the period. The results are a single value for each year in the period.

Return: CalendarDataCollection

getTemperatureDays This method computes the number of time unit temperature days in a given period for a list of
weather stations. The method takes a java.util.List of weather station IDs, the first date in the
period, the last date in the period, a CalendarPeriod to indicate time unit type, a
TemperatureDayType to direct the computation and a reference value.

Returns:CalendarDataCollection

getAnnualExtremeTemp This method computes the annual extreme high or low temperature over a period of years for a list
of weather stations. The method takes a java.util.List of weather station IDs, the first year of the
period, the last year of the period, and a DataType enumeration to determine high or low
computation.

Returns: CalendarDataCollection

getPercentageNormal This method computes the percentage of normal data value for a list of weather stations over a time
period. The method uses the entire station record to determine the average value for a given time
unit up until that point, the current value is then divided by the average to produce the % of normal.
The method takes as arguments a java.util.List of weather station IDs, a DataType enumeration for
the variable to compute for, the starting date of the period, the ending date of the period, and a
CalendarPeriod enumeration to indicate the time unit to compute for.

Returns: CalendarDataCollection

Table 25: The ClimateDataQuery component definition.

 77

The ClimateDataQuery maintains an internal reference to a climate data source as defined in the

core foundation services and injected using a DataSourceInjector. The component is stateless, with each

method call encapsulating a full component transaction. Several enumerations including the

CalendarPeriod are used to control time units, the DataType to indicate the weather station variable

being queried, and the TemperatureDayType support the component. The DataType enumeration is a

system-wide enumeration that contains values representing each type of data made available by FIRM

components; these range from persistent data model data, to component computed information and

component synthesized knowledge. A catchall is included for support as new data types are integrated in

the system.

The methods on the ClimateDataQuery all return CalendarDataCollection objects, as all climate

data in FIRM map to a set of calendar time sequences. Several of the methods include a CalendarPeriod

argument to determine the time unit over which the computation or query is executed; others are broken

out into unique method calls based on that information. There is no driver for one approach over

another, the methods that are broken out do not incorporate any logic that would prevent them from

being structured to take a CalendarPeriod argument.
19

 Several of the methods on the ClimateDataQuery

compute values dynamically as opposed to querying them from a climate data source. These

computational methods are encapsulated in the ExtendedClimateCalculations class to preserve the

ClimateDataQuery component as a query component only. The computed values are ‘queried’ at runtime

from an instance of the ExtendedClimateCalculations object, allowing a black-box implementation of the

calculation component.

ClimateMetaDataQuery

Method Description

findStations The find stations method will locate stations based on search terms. The method makes several calls to the
various station methods based on analysis of the search terms. The method takes as an argument a
StationSearchTerms object.

Returns: MetaDataCollection<MetaDataType>

19
 This was actually done in the Mozart builds of FIRM to create consistency within the component and decrease method clutter.

 78

getMetaData This method will return a single meta data type value for each station in a list of stations. It takes a
java.util.List<String> of weather station IDs, a MetaDataType enumeration indicating the type of meta data and a
CalendarPeriod to indicate the time unit for which the metadata is queried.

Returns:MetaDataCollection<MetaDataType>

getAllMetaData This method will return all station metadata values for a list of weather stations. It takes a java.util.List<String>
of weather station IDs, and a CalendarPeriod enumeration to indicate the time unit for which the metadata is
queried.

Returns: MetaDataCollection<MetaDataType>

getLongestPeriod This method will compute the longest period of record for a list of weather stations. The longest period consists
of the earliest starting date and latest ending date of the station records represented by the list. The method
takes as arguments a java.util.List<String> of weather station IDs and a CalendarPeriod enumeration.

Returns:TemporalPeriod

getEndingDate This method will compute the latest ending date in the persistent climate date model data source for a given
time unit. It takes a single argument of CalendarPeriod.

Returns: DateTime

getVariableMetaData This method will query the available variable metadata for each station in a list of stations. The method takes a
java.util.List<String> of weather station IDs.

Returns: java.util.Map<String, java.util.Map<DataType, VariableMetaData>>

filterStations The filterStations method is used to filter a list of weather stations by a set of runtime-defined operations. This
method allows caller classes to generate precise lists of station IDs for use in other component operations. The
method takes a java.util.List<String> of weather station IDs, a java.util.List of VariableFilter objects to apply to
the station list, a TemporalPeriod indicating the overall period for which the variables must report data, and the
overall tolerance for missing data before a station is filtered out.

Returns: java.util.List<String>

getIntervalGaps This method will compute a list of gaps in data reporting for each station In a list of stations. The method takes a
java.util.List<String> of weather station IDs and a DataType enumeration to indicate the variable type for which
the gaps are being searched.

Returns: java.util.Map<String, java.util.List<Interval>>

isValidStation This method is used to validate station IDs against a climate data source. It takes a String station ID.

Returns:bool

removeInvalidStation This method will remove any invalid station IDs from a list of stations. It takes a java.util.List<String> of weather
station IDs.

Returns: java.util.List<String>

Table 26: The ClimateMetaDataQuery component definition.

 The ClimateMetaDataQuery, like the ClimateDataQuery, maintains an internal reference to a

climate data source; it also maintains a reference to a geographic data source. The tie to the geographic

data model supports the explicit linkage between this component and the SpatialQuery discussed later.

The ClimateMetaDataCollection makes use of the shared DataType enumeration for identifying the

specific climate value that will be used for many of the queries. In several cases a CalendarPeriod is also

 79

required. Time units must be provided for several metadata queries to allow the query logic to determine

the end date metadata value. Time units partition end dates due to the fact that time unit end dates will

differ over the reporting record. For example, when data are queried in the middle of the month the end

date for daily data may be the current day, however insufficient data are available to generate a monthly

summary, so the end date for a monthly time unit would be the last day of the previous month. By

passing a CalendarPeriod to the metadata query methods, the caller can indicate which time unit to use

when determining the end date.

 The ClimateMetaDataQuery also includes an operation to ‘fine tune’ a list of stations based on

the desired reporting frequency for variables in reported by the station. The filterStations() method

allows a list of weather station IDs to be filtered to include only stations matching the parameters of a list

of VariableFilter objects. This method provides upper bounds to the filter set that are checked for the

aggregate station-reporting window. If the upper limits are not met, the station is excluded before the

filters are applied. The remaining stations are run through each filter in order and removed from the list if

the variables do not match the filter criteria. The method includes a flag to indicate that a ‘deep filter’ be

executed. If this is false, the reported metadata from a climate data source is used as an input to each

filter. If true, the actual data sequence for the period described by the filter is queried and iterated over

to determine if it matches the criteria; this method considerably increases the runtime of the method call.

The MetaDataQuery also provides a method to generate a list of station IDs based on a set of search

terms. The SearchTerms object is generated from a search query string using ANTLR
20

. This allows the

climate components to support search engine functionality. The implementation of a search engine,

however, is left to the application model.

DROUGHT COMPONENTS

 The drought component model is comprised of components for computing drought index values

and querying drought impact reports. Drought components interact with a climate data source through

20
 http://www.antlr.org/

 80

the climate component service in order to obtain climate data for drought index computations. The

components in the drought component model are grouped to form the drought service; the service is

made up of the following components: DroughtIndexQuery, DroughtImpactQuery,

DroughtImpactManager, NSMObject, PDSIObject, and the SPIObject. The last three components in this

model do not conform to the naming conventions for components due to being implemented as native

code that is deployed in the native component container. The objects represented above are proxy

objects for native library. Access to the components is made available through the

DroughtServiceAccessor. Standard getter methods for each component type, excluding the native

components, are used to access component instances. The DroughtServiceManager maintains

configuration parameters for the drought components including the native component binding URLs, and

ties the drought component model to the core foundation services. The DroughtServiceManager is also

used to obtain a reference to the DroughtImpactManager, a system support object that is not remote.

The following tables describe the interfaces for each of these components.

 The primary drought component is the DroughtIndexQuery. This stateless componentis

responsible for computing drought index values for all drought indices supported by the framework.

Component operations complete over the course of a single synchronous method call. The following

table describes the methods provided by the DroughtIndexQuery.

DroughtIndexQuery

Method Description

runNewhallSummary This method runs a Newhall summary simulation on each station in a list. The inputs for
the method are a java.util.List<String> of weather stations IDs and the start and end date
of the period over which the simulation will be run.

Returns:NSMSummaryDTO

runCompleteNewhall This method runs a complete Newhall simulation for each weather station in a list. The
inputs for this method are a java.util.List<String> of weather station IDs and the start
and end dates of the period over which the simulation will be run.

Returns:NSMCompleteDTO

computeWeeklyPdsi This method will compute weekly PDSI values in a single year for each weather station in
a list of stations. The number of values returned for the year will be 52 / step count;
skipping periods equal to the step count. The arguments to the method are a PdsiType
enumeration indicating the type of PDSI to compute, a java.util.List<String> of weather
station IDs, aPdsiWeeklyStep enumeration to indicate the number of steps for the
computation, and the ending date of the computation.

 81

Return: CalendarDataCollection

computeMultiYearWeeklyPdsi This method will compute weekly PDSI values over multiple years for each weather
station in a list of stations. The number of values returned for each year will be 52 / step
count; skipping periods equal to the step count. The arguments to the method are a
PdsiType enumeration indicating the type of PDSI to compute, a java.util.List<String> of
weather station IDs, aPdsiWeeklyStep enumeration to indicate the number of steps for
the computation, the ending date of the computation, and the year in which the
computation will begin.

Return: CalendarDataCollection

computeContinousMultiYearWeeklyPdsi This method will compute weekly PDSI values over multiple years for each weather
station in a list of stations, computing a step count PDSI for each week in the year. The
arguments to the method are a PdsiType enumeration indicating the type of PDSI to
compute, a java.util.List<String> of weather station IDs, aPdsiWeeklyStep enumeration
to indicate the number of steps for the computation, the ending date of the
computation, and the year in which the computation will begin.

Return: CalendarDataCollection

computeMonthlyPdsi This method will compute monthly PDSI values for each month in a single year for each
weather station in a list of stations. The arguments to the method are a PdsiType
enumeration indicating the type of PDSI to compute, a java.util.List<String> of weather
station IDs, and the ending date of the computation.

Return: CalendarDataCollection

computeMultiYearMonthlyPdsi This method will compute monthly PDSI values for each month over multiple years for
each weather station in a list of stations. The arguments to the method are a PdsiType
enumeration indicating the type of PDSI to compute, a java.util.List<String> of weather
station IDs, the ending date of the computation, and the year in which the computation
will begin.

Return: CalendarDataCollection

computeContinuousMultiYearMonthlyPdsi This method will compute monthly PDSI values for each month over multiple years for
each weather station in a list of stations. The arguments to the method are a PdsiType
enumeration indicating the type of PDSI to compute, a java.util.List<String> of weather
station IDs, the ending date of the computation, and the year in which the computation
will begin.

Return: CalendarDataCollection

computeWeeklySpi This method will compute weekly SPI values in a single year for each weather station in a
list of stations. The number of values returned for the year will be 52 / step count;
skipping periods equal to the step count. The arguments to the method are a
java.util.List<String> of weather station IDs, an integer to indicate the number of steps
for the computation, and the ending date of the computation.

Return: CalendarDataCollection

computeMultiYearWeeklySpi This method will compute weekly SPI values over multiple years for each weather station
in a list of stations. The number of values returned for the year will be 52 / step count;
skipping periods equal to the step count. The arguments to the method are a
java.util.List<String> of weather station IDs, an integer to indicate the number of steps
for the computation, the ending date of the computation, and the year in which the
calculation will begin.

Return: CalendarDataCollection

computeContinousMultiYearWeeklySpi This method will compute weekly SPI values over multiple years for each weather station
in a list of stations. The number of values returned for the year will be 52 / step count;
skipping periods equal to the step count. The arguments to the method are a
java.util.List<String> of weather station IDs, an integer to indicate the number of steps
for the computation, the ending date of the computation, and the year in which the

 82

calculation will begin.

Return: CalendarDataCollection

computeMonthlySpi This method will compute monthly SPI values in a single year for each weather station in
a list of stations. The number of values returned for the year will be 52 / step count;
skipping periods equal to the step count. The arguments to the method are a
java.util.List<String> of weather station IDs, an integer to indicate the number of steps
for the computation, and the ending date of the computation.

Return: CalendarDataCollection

computeMultiYearMonthlySpi This method will compute monthly SPI values over multiple years for each weather
station in a list of stations. The number of values returned for the year will be 52 / step
count; skipping periods equal to the step count. The arguments to the method are a
java.util.List<String> of weather station IDs, an integer to indicate the number of steps
for the computation, the ending date of the computation, and the year in which the
calculation will begin.

Return: CalendarDataCollection

computeContinousMultiYearMonthlySpi This method will compute monthly SPI values over multiple years for each weather
station in a list of stations. The number of values returned for the year will be 52 / step
count; skipping periods equal to the step count. The arguments to the method are a
java.util.List<String> of weather station IDs, an integer to indicate the number of steps
for the computation, the ending date of the computation, and the year in which the
calculation will begin.

Return: CalendarDataCollection

computeRangeKbdi This method will compute daily KBDI values over an argument period for each weather
station in a list of weather stations. Arguments to this method are a java.util.List<String>
of weather station IDs, and a DateTime representing the starting and ending day for the
calculation respectively.

Returns: CalendarDataCollection

Table 27: The DroughtIndexQuery component definition.

As a computational component, the DroughtIndexQuery generates information from raw data,

maintaining references to supporting components rather than corresponding data sources. The primary

data source for the DroughtIndexQuery is the ClimateDataQuery. Methods on the DroughtIndexQuery are

responsible for obtaining the raw data needed for the index computations and then passing it to some

delegate object. Delegate objects range from pure Java implementations of a drought index to bindings

to native component implementations. The KBDI, for example, is computed by a pure Java delegate

object, the KeetchByramDroughtIndex class defines the index functionality. The DroughtIndexQuery

maintains an instance of the KeetchByramDroughtIndex allowing that object to compute values in a

thread safe manner.The component utilizes standard climate data objects for most method computations

due to the time sequenced nature of the computed values. A notable exception can be found for the

 83

methods computing Newhall Simulation Model results. As discussed in Chapter 4, the Newhall returns

several data sets for each simulation which must be encapsulated in a unique ADT.

 Due to the computational nature of the functionality provided by the DroughtIndexQuery, the

method calls utilize very few FIRM-specific data types. The arguments are primarily the station IDs and

period over which the computations should be run. In the case of the PDSI and the SPI an additional step

period is provided. The PDSI and SPI consider the deviation from 'normal' climate conditions for a given

site with the conditions defined by some subsequence of time units within the period of computation.

For example, a 3-month SPI will consider the deviation for normal precipitation conditions over a

composite 3-month period. Run for a single year, the result will contain 4 values, one each for Jan. - Mar.,

Apr. - Jun, Jul - Sept., and Oct. - Dec. The step period is therefore a required input parameter. The SPI

allows any number of weekly steps from 1 - 52 and monthly steps of 1 - 12. The PDSI differs in the way in

which it computes results, limiting the step period to specific units: 1 month, and 1,2,4, and 13 weeks. In

order to prevent incorrect periods being used, the PDSIWeeklyStep enumeration is used to restrict values.

The PDSI also computes several index values internal to the computation, these can be used as the result

value by passing in the desired enumerated value from the PDSIType enumeration.

 The persistent drought data model includes definitions for several entities encapsulating drought

report functionality. The drought component model includes two components for interacting with this

data. Report data are made available through the DroughtImpactQuery, while report creation operations

are provided by the DroughtImpactManager. The DroughtImpactQuery is stateless and contains several

methods for returning drought impact reports from a drought data source. It maintains a reference to a

drought data source provided by the core foundation services, as well as references to MapArchive and

MapQuery components that are part of the core foundation services. The DroughtImpactQueryprovides

the following synchronous methods.

DroughtImpactQuery

Method Description

queryStateImpacts This method will query all drought impact reports for a given state over a given time period. The
arguments to this method are the USStateenumeration for the desired state and the DateTime
beginning and ending of the period over which the query should be run. An overload method
requires only the USState enumeration.

 84

Returns:ImpactQueryResult

queryCountyImpacts This method will query all drought impact reports for a given county over a given time period. The
arguments to this method are the USCounty value of the desired county and the DateTime
beginning and ending of the period over which the query should be run. An overload method
requires only the USCounty value.

Returns:ImpactQueryResult

queryZipCodeImpacts This method will query all drought impact reports for a given region defined by a US zip code over a
given time period. The arguments to this method are the USZip value of the desired area and the
DateTime beginning and ending of the period over which the query should be run. An overload
method requires only the USZipCode value.

Returns:ImpactQueryResult

queryImpacts This method will return all impacts over a given period of time for an arbitrarily defined geographic
region. The arguments to the method are a BoundingBox describing the region, the start and end
DateTime of the period, and a SpatialReferenceType indicating the type of reports to be queried.

Returns: ImpactQueryResult

queryStationImpacts This method will return all impacts that can be associated with a given weather station over a
period. The method takes a java.util.List<String> of weather station IDs as well as the start and end
DateTime of the period.

Returns: ImpactQueryResult

searchAllReports This methods will return all impact reports matching a given search string. The method takes a
single java.lang.String query string.

Returns:ImpactQueryResult

loadReports This method will load impact report entities for all of the ShadowImpact objects in the argument
ImpactQueryResult.

Returns: java.util.Set<ImpactReportBean>

loadReport This method will load an impact report entity for the argument ID value.

Returns: ImpactReportBean

queryDroughtMonitor This method will compute the spatial frequency of drought monitor classifications across the area of
effect for a drought report given as the ID of the ImpactReportBean.

Returns: java.util.List<SpatialFrequency>

searchReportsByDroughtMonitor This method will return a list of impact reports that contain impact regions that have an occurrence
of some drought monitor classification over a period of time. The arguments to this method are a
DMClassification enumerated type to indicate the DM classification, and the DateTime period start
and end objects.

Returns:ImpactQueryResult

Table 28: The DroughtImpactQuery component definition.

Query operations on the drought data set operate against space, and space and time. Access to report

data is limited by use case to the primacy of space when accessing drought reports. The query methods

provided by the DroughtImpactQuery are overloaded to allow optional temporal constraint arguments to

be passed, allowing a specific period of time to be considered over some space. The queries map to

 85

spatial definitions provided by the geographic data model. The searchAllReports() method allows an

unconstrained query against all reports. The method will query impact reports based on the occurrence

of the query string in the title or description of the report. The method will analyze the string such that if

the value matches a ReportCategory type, all reports with that category will be returned.

 The linkage to the spatial functionality provided by the geographic component model enables

several unique queries based on the spatial nature of the data but which do not appear directly in the

data set. Namely, the ability to link this data based on its spatial aspects to other unrelated purely spatial

data sets; this process forms what would be considered 'knowledge' in the framework. The examples of

this process implemented in the DroughtImpactQuery component are the queryDroughtMonitor() and

searchReportsByDroughtMonitor() methods. These methods links the drought impact data set with the

US Drought Monitor
21

 data set. The drought monitor is an example of a purely spatial data set whose

access is enabled through core foundation services. The queryDroughtMonitor() method will compute the

DM classifications and their relative frequency in the effected region described by the report over a

period of time; yielding Drought Monitor results from drought impact data. The

searchReportsByDroughtMonitor() method does the inverse, returning drought impact results from

Drought Monitor data.

 The DroughtImpactManager is a stateful component that provides drought report management

functionality to clients. This functionality is, in the current implementation, limited to system

components only; the component interface is Local. Since the component is designed around import use

cases, it is transactional and allows multiple reports to be persisted at the same time; this transactional

nature necessitates that the component instance be stateful. The transactional nature of the component

protects against orphan data being created in the system in the event of loss of communication with the

component. Data is only persisted to the drought data source after a transaction is started, entities

21
 The US Drought Monitor is a cartographic product authored weekly by the National Drought Mitigation Center. The drought

monitor maps depict the 50 US states and the severity of drought occurring in various regions. Drought severity is subjectively
assessed through various data sources. More information can be found at: http://drought.unl.edu/dm/.

 86

updated, and the transaction explicitly committed. The DroughtImpactManager provides the following

synchronous methods.

DroughtImpactManager

Method Description

startTransaction This method creates a transaction for updating a drought data source drought report entities.

Returns: void

commitTransaction This method will commit all changes made to the data model during the transaction.

Returns: void

rollbackTransaction This method will close the current transaction and lose any changes made.

Returns: void

isInTransaction Flag method to determine of the current object instance has a transaction.

Returns: bool

loadReport This method will load a report of the argument type. The method takes a
java.lang.Class<reportType> argument to determine the report type and a long ID of the report. The
method is parameterized as a generic return which will be determined by the report type argument.

Returns:<reportType extends BaseReport>

addReport This method will persist a BaseReport instance to a persistent drought data model data source,
creating an entry for each entity value contained in the object graph. The method takes
java.lang.Class<reportType> and BaseReport arguments.

Returns: <reportType extends BaseReport>

updateReport This method will persist updates to a BaseReport instance to a persistent drought data model data
source, updating all entities for each entity value contained in the object graph. The method takes
java.lang.Class<reportType> and BaseReport arguments.

Returns: <reportType extends BaseReport>

removeReport This method will delete from a persistent drought data model data source the entity referenced by
the BaseReport argument as well as all entities in its object graph.

Returns:void

removeCategory This method will delete a ReportCategory from a persistent drought data model data source, any
entities referencing the ReportCategory instance will be updated when the transaction is committed.

Returns:void

Table 29: The DroughtImpactManager component definition.

 The DroughtImpactManager maintains a reference to both a drought and geographic data

source. Components of the drought component model make significant use of the geographic data

model. For this reason, a single data source is used to instantiate both data models. The

DroughtImpacctManager interacts with each data source through a single JPA EntityManager. This

 87

component relies heavily on the persistence functionality provided by JPA, wrapping that functionality to

create instances of transient objects. The CRUD methods of the DroughtImpactManager each treat the

report object instances as a BaseReport, allowing a single CRUD operation for all report types rather than

one for each. The CRUD operations make use of generics to appropriately cast the entity that is returned.

CRUD operations return an instance of the entity to ensure that, after performing an operation, a client

can maintain a reference up-to-date entities (i.e. those tied to a persistence context). For this reason,

when updating an entity the held reference should always be updated.

Native Components

 The drought component model contains several components that are implemented as native

components and deployed in the native component container. These include implementations of the Self

Calibrated Palmer Drought Severity Index [15,16], Standardized Precipitation Index [18] and Newhall

Simulation Model [14]. Each of these indices were taken directly from a previous decision support system

and were not ported to Java due to significant testing taking place over several years. The

implementations, written in C and C++, were updated for FIRM to include a component interface that

allows binding between the native code and the higher-level Java code. The native component structure

is made up of the native library, a native interface and a Java class instance with a remote interface.

Figure 22: The structure of a native component

Higher-level components interact with native components through the RMI object interface. The running

object instance is bound to the native component container maintained by the integrated component

runtime. The native code is compiled as a library and is interacted with by the Java component instance

 88

using the Java Native Interface (JNI). Each library has a component interface associated with it to provide

JNI method bindings to the library.

 JNI allows Java code to execute and pass methods to C++ method implementations. Call

marshalling using variable reference passing add considerable overhead to the computation and so the

FIRM implementation opts for direct memory access between components. The role of the Java

component instance is to interact with higher-level components to obtain data needed by the native

libraries. This data is then placed in previously allocated memory and a pointer passed to the library. On

return from the library, the Java component instance retrieves any values from a memory pointer

returned by the library. The use of direct memory I/O provides a considerable increase in performance.

Direct memory access is provided by the Java Native IO library that is part of the Java Runtime

Environment. After retrieving computed values from memory, the Java component instance creates an

instance of a transient data model entity, populates it and returns it to the calling component. The

PDSIObjct, SPIObject, and NSMObject are Java component instances that each communicate with the

appropriate library through a JNI library interface.

 The DroughtImpactQuery is the only calling component to the native components, serving as a

proxy component for other components to use for computing drought index values. As a result, each of

the objects named above contains the same method signatures found for the functionality on the

DroughtIndexQuery. The DroughtIndexQuery is used as a catch-all for drought index computations so that

all calling components interact uniformly using EJB. This allows internal calling components to benefit

from built in service functionality provided by the EJB container like instance injection and transaction

management. It also facilitates a more uniform interaction model with core foundation services.

GEOGRAPHIC COMPONENTS

 The geographic service is comprised of two components, the SpatialQuery and the

LayerStatisticQuery. These two components interface with a geographic data source and GIS services

provided by the core foundation services. Their primary purpose is to computationally relate data

elements to spatial data, allowing for data to be retrieved based on spatial definitions rather than values

 89

explicitly defined by the data model for which values are being queried. The service includes the

GeographicServiceAccessor for obtaining references to each component and a GeographicServiceManager

to bind it to GIS components and the core foundation services. The GeographicServiceManager maintains

configuration properties for accessing both GIS and static spatial data sets.

 The service includes an object for accessing persistent geographic model geographic boundaries

called the SpatialQuery. In addition to access to the geographic data source, the SpatialQuery also links

to the climate data source, providing methods to query weather stations based on geographic

boundaries. This stateless component maintains both a JDBC and JPA connection to a geographic data

source as well as a JDBC connection to a climate data source. Both JPA and JDBC are used to facilitate

more robust queries while allowing for reuse operations on the entities. The following synchronous

operations are provided by this component.

SpatialQuery

Method Description

getCountiesByState This method will query a geographic source model data source for all US counties that are defined in
a US state. The argument for this method is aUSState enumeration.

Returns: java.util.Set<USCounty>

searchCounties This method will query a persistent geographic data model data source for all counties based on an
argument county name string using fuzzy matching.

Returns: java.util.Set<USCounty>

getCountiesByFips This method will query a geographic data source for all counties based on a list of FIPS code. The
method takes a java.util.List<String>as an argument.

Returns: java.util.Set<USCounty>

searchCountiesByState This method will query a geographic data source for all counties based on a name string constrained
to a US state using fuzzy matching. This method takes a java.lang.String county name string and
aUSState enumeration as arguments.

Returns: java.util.Set<County>

getCountiesByRegion This method will query a geographic data source for all counties where a majority of the defined
area exists in an argument area definition. The method takes a BoundingBox argument.

Returns: java.util.Set<USCounty>

getStatesByRegion This method will query a spatial engine for all states where a majority of the defined area exists in an
argument area definition. The method takes a BoundingBox argument.

Returns: java.util.Set<USState>

getCountyById This method will load a US county entity from a geographic data source based on the argument
county ID.

 90

Returns: USCounty

getCityById This method will load a US city entity from a geographic data source based on the argument city ID.

Returns: USCity

getCitiesByState This method will query a geographic data source for all US cities that are defined in a US state. The
argument for this method is aUSState enumeration.

Returns: java.util.Set<USCity>

getCityByZip This method will query a geographic data source for all US counties that are defined in a US zip code.
The argument for this method is a java.lang.String zip code.

Returns: java.util.Set<USCity>

queryStations This method will query all weather stations that exist in a given geographic extent. The method
takes a BoundingBox as an argument.

Returns: StationList

getStationsForDefinedRegion This method will query all weather station IDs for stations that exist in a given geographic extent.
The method takes a BoundingBox as an argument.

Returns: java.util.List<String>

getStationsForState This method will query all weather station IDs for stations that exist in a state. The method takes
aUSState enumeration as an argument.

Returns: java.util.List<String>

getStationsByZipCode This method will query all weather station IDs for stations that exist in a given zip code within a k
mile radius. The method takes a java.lang.String zip code and int radius as an arguments.

Returns: java.util.List<String>

Table 30: The SpatialQuery component definition.

The operations provided by the SpatialQuery are generally divided by the type of geographic boundary

being used for the query, supporting all US states, counties, cities, zip code, and custom defined spatial

extents. The component also provides logic to search for US counties. This method operates as a

standard query but does not require an exact match for return data. A county name string is used to

perform a fuzzy search of persistent geographic data to return any matching counties; a similar method

allows the query to be constrained to a US state. Collections of the corresponding entities or ID values are

returned by the operations.

 The LayerStatisticsQuery is a geographic component that allows classification data to be

extracted from spatial objects (i.e. maps). This stateful component includes operations to compute the

frequency of a classification occurrence over either time or space for a spatial data object represented by

an ArchivedMap. This is an example of a component that builds exclusively off functionality provided by

 91

core foundation service components. These operations are general enough that this component was

considered a candidate for the core foundations services; however, due to its use of data elements from

the persistent geographic data model it was included as a part of the FIRM component model. The

inclusion of this component in the FIRM component model is an example of the reuse of spatial

elements/operations across domain models discussed previously. The following synchronous operations

are provided by the LayerStatisticsQuery.

LayerStatisticsQuery

Method Description

queryPercentageByBoundingBox This method will extract classifications for a map and compute their frequency over a defined
geographic region. This method takes an ArchivedMap and BoundingBox as arguments.

Returns: SpatialFrequency

queryPercentageByCounty This method will extract the classification for a map and compute their frequency for a given county.
This method takes an ArchivedMap and a USCounty as arguments
Returns: SpatialFrequency

queryPercentageByState This method will extract the classification for a map and compute their frequency for a given state.
This method takes an ArchivedMap and a USState as arguments

Returns: SpatialFrequency

queryPercentgeByDateRange This method will extract the classification for a map and compute their frequency for a given
geographic region over a given time interval. This method takes a DateTime start and end value, a
ViewableLayerType to indicate the spatial data type to compute against and a BoundingBox region
as arguments.

Returns: SpatialFrequency

Table 31: The LayerStatisticQuery component definition.

 The LayerStatisticsQuery is a stateful component due to its reliance on an active connection to a

GIS engine as provided through a reference to a MapQuery instance (also a stateful object). Due to the

overhead associated with opening a connection to and loading a spatial object from the GIS engine, the

object maintains the connection to the GIS engine across calls from the caller component. This prevents

the need to reopen a connection or reload an object to perform a query against a different spatial extent

for the same map. Loading a new map, either for a new map type or different period type, requires that

the GIS server connection be opened to a newly loaded map object, incurring the same penalty as

creation of the object. The LayerStatisticsQuery uses the GIS engine to extract classification data for an

ArchivedMap and determine the frequency of occurrence in a region on the map.

 92

 Spatial frequency can also be computed over time for a series of ArchivedMap instances using

the LayerStatisticsQuery. This operation relies on a data type classification defined by the ViewableLayer

enumeration. This enumeration contains a list of map data types available to the system and having

associated ArchivedMap objects. An ArchivedMap maintains a date period over which the data

represented by the map are 'valid'. Using this data, the LayerStatisticsQuery will extract classification data

from each 'valid' map over a specified time interval. The frequency of a classification for a defined region

of that map will be computed over time, providing a summary of occurrence of a classification across time

for a fixed spatial extent.

A FRAMEWORK ARCHITECTURE

 The realization of a component model provides a gateway to a domain data model and

completes the overall framework architecture. Paring the domain model (inclusive of both the data and

component models) with the core foundation services leads to an extensible framework to support both

the integration of new component services, components to a service, and application development atop

the components. The framework itself requires an application model in order to drive software

application use cases. That is to say, the framework does not provide end-user functionality but serves as

a foundation for software providing such functionality and the data and operations needed to support it.

The goal of the unified framework is to support the development of application model instances through

a uniform set of operations provided by components and tied together through a data model, while

allowing ease of extension in the future.

 A single framework should support many application models within a single domain. If the

framework component and data models are too specific, supporting a single application model,

generalized domain logic encapsulation or definition has not been achieved. This prevents the usefulness

of the framework in supporting data-driven decision support. Failure to properly generalize operations

and data definitions results in a framework that cannot easily adapt to changes to existing, or inclusion of

new, data sets. Extension of such a framework would require significant modification to the application

model.

 93

 In order to evaluate the efficacy of the framework architecture for FIRM, and ensure that the

model is sufficiently extensible, an analysis of the integration of application models for decision support

systems in the agricultural domain with FIRM would need to be preformed. Chapter 6 of this thesis

discusses that work by providing two decision support systems as case studies, detailing the differences

between the application models and the efficacy of FIRM to support the use cases they represent.

 94

CHAPTER 6: CASE STUDY – TWO DECISION SUPPORT SYSTEMS

 This chapter presents as a case study two web-based decision support systems that used FIRM as

a foundation for acquisition of data to support services. Each represents a unique application model in

the domain of agricultural decision support that was able to take advantage of the architecture of FIRM.

The first provides an example of an application model created expressly to take advantage of FIRM,

demonstrating the specific benefits of the data integration approach embodied by FIRM. The second

provides an analysis of FIRM as a framework to support an existing application model, discussing the

benefits to refactoring, stability, and integration. The focus of this discussion revolves around the insights

gained through the use of FIRM in the development of a new system and its integration with a legacy

system. The process of development and extension led to the following insights into the use of FIRM as a

component architecture for data integration:

1. The provision of orthogonal framework logic through a set of managed services frees the

framework component model to incorporate domain-specific business logic, supporting greater

decoupling of components and increasing application model flexibility (component decoupling);

2. The internal decoupling of the component model supports the development of a strongly typed,

well defined domain data model, which can act as a connector architecture to support

decoupling of the component model from the application model (data connectors);

3. The decoupling of the application from component model supports the integration of new data

sets through tool development in the application domain while at the same time allowing new

processes to be easily incorporated into the component model with no impact to the application

model (model decoupling);

4. The encapsulation of the domain model into independent, well defined units, supports software

developers in the creation of applications from the framework. This support facilitates greater

software evolution in the space by allowing developers to more easily incorporate use cases in

their software systems (developer support).

 95

Each of the lessons learned addresses a different aspect of the overall framework architecture, building

from the lowest level framework elements to the most abstract application concepts. The remainder of

this chapter discusses each of these insights as demonstrated though the two cases studies, beginning

with an introduction to each system.

THE GREENLEAF PROJECT: A REFERENCE IMPLEMENTATION

 Beginning with the second major milestone of FIRM, a web-based decision support system was

being developed in order to provide a reference implementation for a FIRM application model. The

GreenLeaf Project (GreenLeaf), a decision support system designed to provide users with integrated data

in the agricultural domain, was that model. The complete FIRM architecture, including GreenLeaf as an

application model, can be seen in Figure 24.

Figure 23: FIRM application model diagram (The GreenLeaf Project)

In this view of the system, FIRM is composed of the service, data and component models. This is shown

beneath the dotted line in. The application model is built based on the available services provided by

FIRM and incorporates the use cases defined for the specific application. As a result of application-

 96

specific use case definitions, the application model may contain both data and component models. These

models would represent domain logic that is specific to the application in question but may link to

common data elements from FIRM; for example, the definition of an RSS feed service for drought impact

reports. The application-side data and component models are not shown in the diagram, as they are sub-

elements of the overall application model.

 A characteristic of the component architecture is the application model is able to act as a view.

Application view can be thought of as the element of the application responsible for data visualization and

user interaction with the component model. In this regard, the application model can be thought of as a

view model for FIRM. Breaking out the view from the model in this way recognizes the fact that

interaction and presentation models my differ dramatically based on device specific use cases and,

particularly in the web ecosystem, may exist in several forms for a single application model; consider a

website with both pages designed to be viewed on mobile devices and pages for standard browsers. This

segmentation of the architecture, and its view relative to integration with FIRM, allows for several

interesting extensions that are discussed later.

 With this loosely coupled view of the complete architecture for FIRM, GreenLeaf was designed to

deliver data through task-oriented workflows. The underlying component structure was masked in

GreenLeaf by the implementation of the use cases. The decision support system enables information

discovery through a small set of well-defined tasks as opposed to a collection of tools. The tasks that

GreenLeaf supports are: search, subscribe, access, and map. Data are presented to the user in the

context of each of those tasks, allowing novice users to easily access data without significant background

knowledge while at the same time supporting more advanced users requiring specific data sets. The

model for decision support presented by GreenLeaf differs significantly from the workflow-driven models

of pervious systems in the agricultural domain. This characteristic was born out during development

through a process that started with a more workflow-driven set of use cases that evolved to take

advantage of the FIRM data integration structure. That fact that data integration was easily achievable at

several points in the system allowed for the development of more robust, task-oriented, tools. The

evolution of the use cases resulted in the release of a highly extensible umbrella for decision support that

 97

not only provided a POC for FIRM, but also enables the development of tools for decision support in

several dimensions including web, desktop and mobile devices.

THE NATIONAL AGRICULTURAL DECISION SUPPORT SYSTEM: AN EXTENSION

 In contrast to the GreenLeaf Project, The National Agricultural Decision Support System (NADSS)

[19,20] was a decision support system built to provide agricultural data to users of three primary types:

decision makers, researchers, and producers. The system was structured around the concept of

transitioning data to information and paring information, data, and other information in order to form

knowledge. The NADSS application conformed to the standard conventions for decision support of the

time, beginning development in 2002 and being released in 2004
22

. NADSS was built on the 3Co

framework discussed in Chapter 2. NADSS partitioned the tools that it provided based on the data,

information, or knowledge classification. While the user types were not intended to be mapped to the

data types, the use cases for the application were very tool-oriented, and geared primarily to researchers.

The following diagram depicts the architecture for NADSS [19].

22
 This work discusses NADSS 2.x. A pervious version, 1.x was developed from 1999 – 2002. The 1.x version did not take advantage

of a supporting data framework and therefore is not applicable for this comparison.

 98

Figure 24. NADSS application architecture

 The application architecture of NADSS looks very similar to that of FIRM. Figure 25 depicts a

separation of the application model from the underlying component model, here represented by the 3Co

framework. Missing, however, are the explicit service and data model definitions. The 3Co framework

provided a component model that was accessed by the application model using CORBA data types and

SQL. In order to maintain a loose coupling between the application and component models, the NADSS

application model provided an abstraction layer for translating CORBA data objects to more verbose Java

types. This could be considered a quasi-data model, however the abstraction stopped short at a formal

definition of domain objects, relying on more ‘standard’ ADTs to pass data in the system.

 The NADSS application encapsulated several tools for assessing risk in an agricultural landscape;

these have largely been discussed previously and included basic climate data access, Self Calibrated

Palmer Drought Severity Index, Standardized Precipitation Index, Keetch-Byram Drought Index, and

Newhall Simulation Model. 3Co grouped components as a layered architecture as discussed in Chapter 2.

The climate data components belonged to the data layer, the drought components to the information

layer, and several higher-level static spatial products for accessing soil related risk belonged to the

knowledge layer. Intra-component communication (i.e. a drought component using climate data, or a

 99

knowledge component using spatial computations) was facilitated using explicitly defined static

connectors.

 NADSS was used as an application model for FIRM in order to serve as a test case for FIRM

component computations. Tool functionality from NADSS, backed by 3Co,was used to verify the same

functionality in NADSS backed by FIRM. In addition to serving as a test case for the development of the

FIRM component model, NADSS also allowed the flexibility of FIRM to be demonstrated by integrating

application functionality not designed to take advantage of the framework. A version of NADSS was

released with FIRM substituted for 3Co beginning with second milestone of FIRM (Thresher M2).
23

 FIRM

was not completely substituted for 3Co in support of NADSS, rather significant components within 3Co

were deprecated and disabled in the architecture. Those applications that utilized the depreciated

components were updated to make use of FIRM components through the integrated runtime container.

The application model for NADSS was modified only to the extent that required changing the data

integration layer. Higher-level tools and application functionality were not modified to utilize the FIRM

domain model; the previous Java objects were maintained and populated with data from the FIRM data

model as opposed to the CORBA model.

 The substitution of FIRM components did not take place for all 3Co components due to tight

coupling of the application model with the 3Co spatial layer, and by proxy, knowledge layers. While the

information and data layer components were sufficiently generalized to allow for FIRM substitutions with

minimal impact to the NADSS application model, spatial and knowledge components were designed to

specifically support application model use cases. As a result, the abstraction between these aspects of the

component and application models were minimal. In order to effectively substitute FIRM spatial

functionality to support NADSS spatial functionality, significant modification to the application model

would have been required. The goal of the substitution was not to completely replace 3Co as the

supporting framework for NADSS, but to demonstrate the efficacy of the architectural approach for

23
 The first Thresher milestone included the major components of the core foundation services.

 100

building FIRM and to provide QA metrics during the development process. For this reason, the extension

effort for NADSS paired FIRM and 3Co, rather than replacing 3Co entirely.

 What follows is a continuation of the discussion of the integration of FIRM for NADSS, organized

to focus on each of the key insights to data integration that we gained through the case studies.

COMPONENT DECOUPLING

 FIRM is composed of component and data models that are integrated with the core foundation

services to create the unified framework. The abstraction of orthogonal framework services into the core

foundation services frees the components to encapsulate the logic responsible for realizing the use cases

for each component. This prevents the need to tie components together explicitly with framework logic

for various orthogonal operations discussed in Chapter 3. The decoupling of components allows each

component to act as an atomic unit of functionality and results in the integration of new components

taking place with no required impact on the rest of the framework, including the application model. This

latter point is key when considering the development of new software systems that are defined by the

application model. New components can be added to provide new functionality without modification to

other components in the system. This increases the general stability of the system, as errors in one

component effect only those components relying on it. The component decoupling also supports more

efficient unit and regression testing; a new component can maintain its own set of unit tests and

regression only is required on those components that interact with the addition.

 Furthermore, the core foundation services are able to provide a ‘framework’ context to the

components at runtime, allowing applications developed on the component model to transparently take

advantage of both framework services and component integration. The communication protocols,

configuration activities and general low-level data wiring that are often required in order to interact with

distributed systems are incorporated into a single environment variable. This framework middleware of

sorts supports application modeling in isolation, freeing the model to encapsulate the use cases with

loose bindings to the underlying component model; a model required to access the data necessary to

achieve the use cases. This level of abstraction and its benefit are demonstrated through the use of the

 101

framework to support both a legacy application transparently as well as facilitate the integration of

completely disparate data in an application model to support the development of new tools.

 The connector architecture employed by 3Co and the component coupling that occurred as a

result of itled to a static application model definition for NADSS. Tool implementations utilized single

component communication for computation. For example, each drought tool was implemented as a

component with a connector to the climate components. To generate PDSI data, the application would

make calls to the drought component supported by a connector to a data component. Data integration

was most easily achieved by defining connectors through components in the component model and

binding to these in the application model. While the application could integrate data by making multiple

component calls, significant logic would be required to deal with data conversion between CORBA and

Java components, resulting in a ‘stove pipe’ type application architecture. Whether integrated in the

component or application models, new application functionality required the introduction of data

translation elements and connectors between existing components. The result was a component model

that was not, in practice, truly black box to the application model.

 Integrating a new information tool in NADSS would result in the development of a new set of

connectors. While these connectors could be defined using the ADL and casetools provided with 3Co, the

process of adding the new tool required modification to the component model by introducing a new static

connector. This fact can be seen in the incomplete replacement of 3Co with FIRM. In order to support

spatial data integration for several tools, 3Co had introduced connectors to bind components to support

the generation of new data. This process had pushed a portion of spatial service logic into the component

model, and resulted in the modification of several components. As a result, these components could not

be replaced without substituting their functionality in the application model or by introducing application

specific components to the component model. The component coupling that was required to support

the functionality prevented it from being easily replaced by another system.

 By contrast, FIRM was able to integrate several service specific data relationships with no

modification to the component model. The component isolation allowed the JBoss application server to

be replaced by the Glassfish application server between FIRM M3 and M4, integrating several new

 102

middleware services with little impact on the component model. Several of the geographic components in

FIRM were also used make use of spatial data provided though 3
rd

 party spatial services (ArcGIS Server).

The connection logic responsible for binding the components to the spatial services was defined purely in

the core foundation services with each of the components atomically providing data to the connection.

As a result, the implementation of the core integration services spatial component could change without

requiring that other components to be updated and with no impact to the geographic component

connections.

This decoupling was demonstrated by the integration of the US Drought Monitor spatial data set

and drought impact reports. The DroughtImpactQuery was extended beyond its original specification to

include two methods for computing spatial frequency based on the Drought Monitor data set. This

connection was facilitated through the unmodified use of the LayerStatisticsQuery, backed by the

MapQuery and tied together by the data model. When integrated with the display of drought impact

reports, a new view of impact reporting emerges, allowing ground-truth analysis of Drought Monitor

classifications to take place. This functionality was developed as an afterthought based on the needs of a

researcher and required the introduction of two methods on a component. These methods were

originally developed in a free-standing analysis application; they were later included directly in the

DroughtImpactQuery due to general usefulness.

DATA CONNECTORS

By freeing the component model from the framework, the component model is able to address

the specific needs of the domain model; in the case of a data-driven system: to provide data to higher-

level components and applications. This freedom allows for the development of a rich and verbose

domain data model that can act as a connector architecture between the application and component

models. It is this attribute of the system that was unanticipated and was the most important aspect of

data integration. Without the domain data model acting as an abstraction between the component and

application models, cross-model logic of some kind would be needed to allow integration of components

with the application. The lack of this coupling, or rather its provision through the data model, frees both

 103

the component and application model to encapsulate only logic and data relevant to its use cases. The

data model acts as a semantic bridge between the two, allowing each to evolve independently from the

other. The decoupling enabled by the data model also allows for multiple application models to be built

against a single component model, increasing the flexibility of the framework in support of an overall

ecosystem of software components within a single domain.

In allowing the decoupling of the component and application models, the data model achieves

the goal of data integration at multiple points in the system. Base data can be easily integrated through

the development of new components that take advantage of a static or dynamic data source; an example

of which is the generation of drought index data from a climate data source accessed through a climate

component. Dynamically formed data can be integrated at the application layer through the

development of new tools that combine baseline data to visualize some new result. In each case, the

inclusion of the new data does not need to impact other elements of the system, and once included it is

free for use to all other components of the system due to the common domain semantics defined by the

data model. This is most clearly demonstrated in the differences between external mapping components

in NADSS and GreenLeaf.

One of the most significant developments introduced in GreenLeaf as a result of decoupling was

the use of Goolge Maps for spatial data visualization. NADSS had required a tight coupling between

application models and spatial operations. A result of the model decoupling was the limitation of the use

of external visualization elements for spatial display. While Google Maps (and similar products) were not

available during the development of NADSS, retrofitting them later would require significant development

of new spatial components and connectors to drought and climate data providers. The generation of

spatial visualizations in NADSS, accomplished with 3rd party tools, required significant coupling of the

application and component models due to a lack of formal definitions for spatial operations being

encapsulated in a data model. Within GreenLeaf, the concept of completely externalizing visualization of

spatial data was a natural fit with the architecture. The structure of the spatial components provided by

the core foundation services resulted in components that were data retrieval and computation oriented.

Display was left completely to the application model, connected through the data model. As a result, the

 104

GreenLeaf project was able to use both Google Maps and Microsoft Virtual Earth as visualization

platforms, settling on Google Maps in response to use case requirements.

MODEL DECOUPLING

The complete decoupling of the application from the component model leads to tools that do

not directly conform to the layered architecture that was explicit in the structure of NADSS. The FIRM

service model, which replaced the layered deployment structure found in 3Co, is also hidden in the

organization of the application models built on FIRM. The application model is able to focus solely on the

use-case driven requirements for the software, using the data model to connect results from component

calls. The result of this is that building software around the decision support use cases becomes

considerably less dependent on the underlying framework. GreenLeaf milestones were tied to Thresher

milestones, yet the application development process was not. Tool support appeared in GreenLeaf as the

basic data-providers became available in FIRM. An example of the use-case driven software functionality

is the introduction of a weather station search engine with the first milestone of GreenLeaf. The search

engine uses the ClimateDataQuery and ClimateMetaDataQuery to provide a google-like search experience

to the user. The data are organized around that use case, giving the user the ability to access it without

having to first know where to look for it. This implementation took place off a build of FIRM designed

primarily to support NADSS rather than this functionality.

A second benefit of the decoupling of application from component models is that it allows

application model workflows to be task-centric as opposed to tool centric. This wokflow difference can be

seen in contrasting NADSS and GreenLeaf. In NADSS, generating PDSI results using the PDSI tool was a

single task; in GreenLeaf, PDSI data results are present in the system in a number of tasks where

presenting the values make sense. For example, when a user searches for weather stations, the resulting

page that is generated for a weather station result contains variables of many formats for the single

station; values include raw climate data, PDSI, SPI, NSM, data visualizations of data as charts, and drought

impact report data. These values can then be displayed over time for the single point. The use cases in

this example are task-driven: 1) search a station; 2) view a station; 3) change station over time to discover

 105

data. This approach integrates data elements relevant to the specific use case when required by the task.

The result was a much more natural workflow based decision support system. In NADSS, all interaction

was limited to workflows associated with specific tools; the tools being defined by various connectors in

the component model.The complete decoupling of the application from the component model allowed

the development of GreenLeaf and FIRM to take place in parallel, with GreenLeaf use cases being

developed around data, as FIRM was able to provide it.

By decoupling the application from the component model, multiple application models can be

created from the single framework. For example, higher-level services can be constructed to encapsulate

specific data use cases, building targeted data results for delivery to mobile devices. Such an extension

was developed as part of the 2.0 (codename Mozart) release of FIRM. A RESTful service application that

incorporated several use cases found in GreenLeaf was constructed to push integrated data sets to a

mobile application running on the iPhone OS platform. At the outset of FIRM development, the platform

did not exist and the use case was not considered. However, introducing no new technology to the

framework, the application model has been able to evolve to include the new platform. Several desktop

applications were also developed to deliver specific data to users for a specific decision support activity.

The framework enabled an evolution of the application model from a single web-based application to an

entire ecosystem of tools supporting activities in the decision domain.

 The explicit decoupling of application models from the framework that is the core of the

architecture for FIRM allows for many applications to be developed with the framework as a base. This

flexibility allowed FIRM to be evaluated during its construction in a legacy application as well as a newer

implementation. Each system was modeled very differently, incorporating unique sets of use cases. At

the same time, as decision support systems in the agricultural domain, the use cases for each system

shared many common elements.

DEVELOPER SUPPORT

 One of the key framework design goals was to enable developers to easily access framework

components. Starting with the development of the integrated component runtime through the definition

 106

of the object model, elements of FIRM were designed to hide as much of the framework as possible from

the developer. This allowed the components that s/he would write to interact with the data in a domain-

center way. The component context created by the core foundation services allowed client-code written

by non-FIRM developers to easily interact with framework components as if they were standard Java

objects. The fact that a large distributed framework was used to generate component call returns was

abstracted completely from the developer. This abstraction not only increased the scope of development

beyond GreenLeaf, but also lowered the learning curve associated with using the framework.

The strongly typed data model also supported the integration of domain components and the

development of application components by serving as a set of semantics to describe application

functionality and data consumption. It was this fact that originally drove the development of the strongly

type data model, not the resulting abstraction layer between component and application models. With

such a data model, software developers were able to more easily reason about the data provided by the

components and are therefore able to build more robust use case driven systems rather than having to

consider data integration as a first class development driver. Another benefit realized by the data model

in regard to software development was the creation of standards within the software, allowing a greater

level of interaction between software components without the need for complex connector logic. This

resulted in more stable and streamlined software.

The developer support aspect of FIRM contributed greatly to the development of GreenLeaf as

an application model, allowing that model to evolve with software requirements and technologies.

Where NADSS was statically bound to a single framework with a number of technologies, GreenLeaf

communicated with FIRM through the framework context provided by the core foundation services.

Communication with the underlying framework relied solely on the use of standard Java conventions,

allowing the GreenLeaf application model to be easily implemented in several paradigms. Deployed as a

web application, GreenLeaf incorporated aspects of Java EE, JBoss Rich Faces, and Java Server Faces.

However, the application model was also successfully implemented in Flex 3 utilizing BlazeDS to

communicate with underlying Java components. Two very different application development paradigms

were used to implement the same application model definition. Contrasted with NADSS, which required

 107

tight coupling with J2EE and CORBA in order to effectively communicate with 3Co in the web application

paradigm, GreenLeaf was able to easily transition from a standard web application to a distributed

collection of multiple applications.

Beyond the use of the framework to support the development of decision support systems, FIRM

was able to support the development of research components for incorporation into each application

model. Working with researchers at the University of Nebraska at Kearney (UNK), the 3Co and FIRM

development teams provided developer support for the creation of data mining components based on

oceanic and drought indices. The effort of integrating the functionality with 3Co required that developers

run an entire instance of the framework locally at UNK in order to implement and then test the

connectors necessary to tie the component functionality together with the data mining algorithms. This

process required that developers become familiar with all aspects of the 3Co framework. With the

release of FIRM the data mining effort was reset to take advantage of the new framework. In

development against FIRM, the research team at UNK was free to implement the data mining

components in a Java framework of their choosing, they were no longer required to run the framework

locally nor mirror its component organization in order to build the data mining components. Significantly

less interaction between the development teams was required.

CONCLUSION

The ability to easily incorporate new analysis methodologies at the application or component

model demonstrates one of the major strengths of using FIRM as the supporting framework for both

NADSS and GreenLeaf. Throughout the GreenLeaf development process, tool development revolved

around the concept of integrated data rather than encapsulation of a methodology. This more closely

matches the general decision support practices that have emerged in modern decision support tools;

namely, the process of providing seemingly unrelated data in ways that give the user a unique, and likely

informative, view of the domain in which a decision is being considered. The tools contained in GreenLeaf

are more closely aligned with the process of information discovery rather than explicit decision support

based on 'expert' modeled workflows. The line between tools in GreenLeaf becomes somewhat blurred,

 108

with the concept of tool transitioning towards a task that leads to another task and in turn leads to

another. This view of decision support, as a discovery path, is supported directly by the abstractions of

FIRM, mapping directly to the concept of a unified but loosely coupled application space. As a reference

implementation, GreenLeaf demonstrates the ability of FIRM to easily support development activities

within the given domain.

 The use of FIRM as a basis for NADSS introduced a number of improvements to the application

allowing it to outlive its originally intended lifespan. The introduction of the centralized management

framework allowed NADSS to be more easily configured to adjust for changes in deployment and user

load without requiring new deployments or builds; significant improvements to the process of running

data builds were realized through the introduction for FIRM system support components. NADSS also

benefited from increased stability due to the ability to dynamically distribute FIRM component services in

multiple production environments. In the previous, non-FIRM, versions of NADSS, a component failure

generally resulted in the loss of the entire component model runtime. With the introduction of FIRM,

component stability improved dramatically, and system availability was able to be maintained in the

event of a single component failure.

The GreenLeaf Project remains in production today as a replacement for NADSS, the application

model has been used successfully to incorporate several data sets that had not been identified at the

initial time of development, these data sets have been incorporated into the FIRM component model and

integrated in the GreenLeaf application model. The decoupling of the models supported through the data

model of FIRM has also allowed several tools to be created based on data integration alone, and required

no modification to the underlying component model. The GreenLeaf Project replaced NADSS as of May

2008 and is scheduled to undergo a 2.0 release in November of 2009. The 2.0 release will continue the

process of application model evolution and will incorporate a number of tools that run external to the

web-based model. This tool suite continues to be supported by FIRM.

 109

CHAPTER 7: CONTRIBUTION AND FUTURE WORK

 This work contributes a framework architecture to support the development of data-driven

decision support systems and other data-driven applications. The Framework for Integrated Risk

Management (FIRM) is an implementation of the framework architectural concepts presented in this

thesis. FIRM provides an example implementation of a component model supported by core foundation

services to introduce a framework context and allow the development of component logic independent of

framework constraints. This independence allows for the development of a strongly typed domain data

model, facilitating loose coupling between the component and application models and allowing multiple

application models to be developed against a single framework instance.

These capabilities are certainly not unique to FIRM. Many frameworks exist that support

software development through various abstractions and conventions. The goal of this work is not to

present a competing framework but to evaluate an architectural methodology for addressing the needs of

data integration through decoupling of internal components. This methodology can be applied to any

framework designed around data provision. It is particularly applicable to the decision support system

class of applications due to the data-driven nature of the use cases for such systems. Its applicability,

however, is not limited to that domain. From the standpoint of data integration, FIRM provides a

verification of the architecture in its support of two complementary decision support systems.

FUTURE WORK

 To date, application development with FIRM has been limited to the single domain of agricultural

decision support, and within that domain to complementary systems. Several interesting problems

emerge when considering the integration of data across domains or within a very large and partitioned

domain. To achieve integration of such data within the approach presented here,the data model must be

updated, introducing new connection points for components but requiring integration at both the

component and application models. This does not present a significant challenge; it does, however,

require the use of ‘standard’ integration approaches for the initial inclusion of the new data that once

 110

integrated with the framework can be used ‘transparently’ by framework components and applications.

As new data sets that result in changes to the data model are introduced, the model itself becomes

complex and may introduce internal incompatibilities between components. To some extent, this can be

seen with the inclusion of very specific data model definitions for the drought report structure of FIRM.

As the data model grows, inconsistencies are likely to increase, eventually creating the need for layering

within the data model. The result becomes an application model not unlike NADSS that has an

abstraction for dealing with layers in the model between it and the component model.

 This problem is magnified when considering the integration of data sets from two disparate

decision domains. While achieving a great deal of success in providing data in the agricultural decision

domain, FIRM has been considerably less successful at incorporating elements to support projects in the

humanities that required access to climate data. The main issue that is presented with this integration is

the inclusion of very orthogonal data model elements. These do not fit well in the original design of the

data model. In order to integrate these data, the data model could be modified to introduce new

elements, requiring change at the component and application levels. The development of a separate data

framework for the data with integration points provided by a unique application model can address the

problem, however preventing that kind of development for each data set was the stated goal of the

framework.

 Addressing this issue, namely the integration of data across decision domains or within large and

partitioned domains is the goal of future work. That work will investigate the use of semantic web

technologies such as ontologies to define a meta-language for describing data models. With such a meta-

language, one could envision abstractions internal to the data model being defined that provide rules for

data polymorphism that could be used to transition data definitions form one model to another. Various

classes of integration components could be created and incorporated into core foundation services and

application models that enable data discovery and integration. Significant work in data modeling,

semantic web, and domain modeling are fourth coming to determine how best to address the larger-scale

integration issues that emerge as a result of this work.

 111

BIBLIOGRAPHY

[1] Lee, Daniel T., "Decision support in a distributed environment", Proceedings of the July 9-12 1984
national computer conference and exposition, (477 - 488), 1984.

[2] Orman, L., "A multilevel design for decision support systems", ACM SIGMIS Database, Volume 15, Issue
3, pp. 3 - 10, 1984.

[3] Lepreux, S., "Design method for a decision-support system centered on the decider and using
component based programming", Proceedings of the 15th French speaking conference on human-
computer interaction," pp. 295 - 298, 2003.

[4+ Zhang, S., Goddard, S. “A Software Architecture and Framework for Web-based Distributed Decision
Support Systems”, Journal of Decision Support Systems. 43.1 (2007): 1133 – 1150

[5] Burbeck, S.The Tao of e-business services.
http://www.ibm.com/developerworks/webservices/library/ws-tao/

[6] Alur, D., Crupi, J., Malks, D., "Core J2EE Patterns, Best Practices and Design Strategies", Prentice Hall
PTR; 2 edition (May, 2003). ISBN: 978-0131422469.

[7] JSR 255: Java Management Extension (JMX 2.0) Specification.

http://www.jcp.org/en/jsr/detail?id=255

[8] JSR 244: Java Platform Enterprise Edition 5 (Java EE 5) Specification.

http://jcp.org/en/jsr/detail?id=244

[9] Dan, A., Johnson, R., Arsanjani, A. Information as a Service: Modeling and Realization. Proceedings of
the International Workshop on Systems Development in SOA Environments, (2007), 2.

[10] Papzoglou, M., Heuvel, W. "Service Oriented Architectures: approaches, technologies and research
issues.",The VLDB Jounral - The Information Journal on Very Large Databases, 16,3 pp. 389 - 400, 2007.

[11] JSR 220: Enterprise Java Beans (EJB 3) Specification.

http://jcp.org/en/jsr/detail?id=220

[12] Wu, X. “Interchangeable GIS components in spatial decision support systems”, Master's Thesis,
(August 2004).

[13] JavaBeans Specification, Version 1.01
http://cds-esd.sun.com/ESD4/JSCDL/javabeans/1.01/beans.101.pdf

[14+ F. Newhall and C.R. Berdanier, “Calculation of Soil Moisture Regimes from the Climatic Record”, Soil
Survey Investigations Report No. 46, National Soil Survey Center, Natural Resources Conservation Service,
Lincoln, NE, 1996.

http://www.jcp.org/en/jsr/detail?id=255
http://jcp.org/en/jsr/detail?id=244
http://jcp.org/en/jsr/detail?id=220
http://cds-esd.sun.com/ESD4/JSCDL/javabeans/1.01/beans.101.pdf

 112

[15+ W.C. Palmer, “Meteorological Drought”, Research Paper No. 45, US Department of Commerce
Weather Bureau, Washington D.C., 1965

[16+ Wells, N., Goddard, S., Hayes, M. “A Self-Calibrating Palmer Drought Severity Index.” Journal of
Climate 17.7 (2004): 2335 – 2351

[17] Keetch, J., Byram, G. "A drought index for forest fire control", Res. Paper SE-38. Asheville, NC: U.S.
Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 33 pp.

[18] McKee, T.B., Doesken, N.J., Kleist, J., " The Relationship of Drought Frequency and Duration to Time
Scales," Proc. of 8th Conference on Appied Climatology, pp. 179-184, 1993.

*19+ Cottingham, I., Zhang, S., “The Calyx Specification”, National Agricultural Decision Support System
Development Documents, 2004.

[20] Cottingham, I.J., Goddard, S., Zhang, S., Wu, X., Lu, K., Rutledge, A., and Waltman, W.,
"Demonstration of the National Agriculture Decision Support system", Proceedings of the 2004 National
Conference for Digital Government Research, Seattle, WA. pp. 303-305, 2004.

[21] Jazayeri, M., "Some Trends in Web Application Development", International Conference on Software
Engineering, 2007 Future of Software Engineering, pp. 199 - 213, 2007.

[22] Zdun, U., Hentrich, C., Dustdar, S. Modeling process-driven and service-oriented architectures using

patterns and pattern primitives. ACM Transactions on the Web, 1,3 (2007).

[23] P. Oriezy, P., Medvidovic, N., Taylor, R.N., Roseblum, D.S., "Software Architecture and Component
Technologies: Bridging the Gap", Proc of Workshop on Compositional Software Architectures, Jan.
1998.

[24] JBoss Seam Framework, http://seamframework.org/Home

[25] JBoss AOP Reference Guide, http://jboss.org/jbossaop/docs/2.0.0.GA/docs/aspect-
framework/reference/en/html/index.html

http://seamframework.org/Home

 113

APPENDIX A

 This appendix contains the Java source code for an example program that is a client of FIRM. The

program makes use of many of the elements discussed in this thesis to provide a printout of climate and

drought information for a zip code. When executed, the program will query weather stations within some

miles of a given zip code and filter them to only those stations reporting 30 years of rainfall data at 90%.

It will then query rainfall data, compute an SPI, obtain drought impact reports and display all of the

station data to the screen in a report format. While many of the software applications built on FIRM

incorporate considerably more complex use cases, this simple example demonstrates the basic

functionality of FIRM that enables more complex examples.

A1 – SAMPLE FIRM CLIENT PROGRAM

package examples;

import java.text.NumberFormat;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import org.joda.time.DateTime;

import org.joda.time.chrono.GregorianChronology;

import org.joda.time.format.DateTimeFormat;

import org.joda.time.format.DateTimeFormatter;

import edu.unl.firm.climate.ClimateDataQuery;

import edu.unl.firm.climate.ClimateMetaDataQuery;

import edu.unl.firm.climate.ClimateServiceAccessor;

import edu.unl.firm.climate.MetaDataCollection;

import edu.unl.firm.climate.MetaDataType;

import edu.unl.firm.climate.VariableFilter;

import edu.unl.firm.climate.VariableMetaData;

import edu.unl.firm.drought.DroughtImpactQuery;

import edu.unl.firm.drought.DroughtIndexQuery;

import edu.unl.firm.drought.DroughtServiceAccessor;

import edu.unl.firm.drought.ImpactQueryResult;

import edu.unl.firm.drought.ImpactReportBean;

import edu.unl.firm.drought.MediaReportBean;

import edu.unl.firm.drought.ShadowImpact;

import edu.unl.firm.shared.CalendarDataCollection;

import edu.unl.firm.shared.CalendarPeriod;

import edu.unl.firm.shared.DataType;

import edu.unl.firm.shared.TemporalPeriod;

import edu.unl.firm.terra.SpatialQuery;

import edu.unl.firm.terra.TerraServiceAccessor;

import edu.unl.firm.terra.USCity;

publicclass FirmExample {

 privatestaticfinal DateTimeFormatter D_FORMATTER = DateTimeFormat.mediumDate();

 privatestaticfinal NumberFormat N_FORMATTER = NumberFormat.getPercentInstance();

 publicstaticvoid main(String[] args) {

 try {

 long start = System.currentTimeMillis();

SpatialQuery spatial_query = GeographicServiceAccessor.

 114

getInstance().getSpatialQuery();

 DroughtImpactQuery drought_impact_query = DroughtServiceAccessor.

getInstance().getDroughtImpactQuery();

 DroughtIndexQuery drought_index_query = DroughtServiceAccessor.

getInstance().getDroughtIndexQuery();

 ClimateDataQuery climate_query = ClimateServiceAccessor.

getInstance().getClimateDataQuery();

 ClimateMetaDataQuery meta_query = ClimateServiceAccessor.

getInstance().getClimateMetaDataQuery();

 List<String> stations = spatial_query.getStationsByZipCode("68521", 10);

 USCity city = spatial_query.getCityByZip("68521");

 TemporalPeriod period = newTemporalPeriod(

 new DateTime(1980,1,1,0,0,0,0,

 GregorianChronology.getInstance()),

 new DateTime(2009,6,30,0,0,0,0,

 GregorianChronology.getInstance()));

 VariableFilter filter = newVariableFilter();

 filter.setVariableType(DataType.PRECIP);

 filter.setMissingTolerance(10f);

 filter.setValidPeriod(period);

 List<VariableFilter> filters = new ArrayList<VariableFilter>();

 filters.add(filter);

 System.out.printf("\nTotal stations in zip code: %d\n", stations.size());

stations = meta_query.filterStations(stations, filters, period, 90f, false);

System.out.printf("Total filtered stations in zip code: %d\n",

stations.size());

 MetaDataCollection<MetaDataType> station_meta_data =

meta_query.getAllMetaData(stations, CalendarPeriod.MONTHLY);

 Map<String, Map<DataType, VariableMetaData>> variable_data =

 meta_query.getVariableMetaData(stations);

 CalendarDataCollection precip_data = climate_query.getPeriodMonthlyData(

stations,

 new DateTime(2009,1,1,0,0,0,0,GregorianChronology.getInstance()),

 new DateTime(System.currentTimeMillis()), DataType.PRECIP);

 CalendarDataCollection spi_data = drought_index_query.

computeContinuousMultiyearMonthlySpi(

stations,

 1, newDateTime(2009,1,1,0,0,0,0,

GregorianChronology.getInstance()),

2009);

 ImpactQueryResult impacts = drought_impact_query.queryCountyImpacts(

city.getCounty(),

 new DateTime(2009,1,1,0,0,0,0,

GregorianChronology.getInstance()),

 new DateTime(System.currentTimeMillis()));

 for (String station : station_meta_data) {

 Map<MetaDataType, Object>meta = station_meta_data.

getStationMetaData(station);

 Map<DataType, VariableMetaData> var = variable_data.get(station);

 System.out.printf("\n --- %s ---\n",

meta.get(MetaDataType.STATION_NAME));

 System.out.printf("Network: %s\n",

meta.get(MetaDataType.NETWORK_NAME));

 System.out.printf("Network ID: %s\n",

meta.get(MetaDataType.NETWORK_ID));

 System.out.printf("Station Start Date: %s\n",

D_FORMATTER.print((DateTime)meta.get(

MetaDataType.START_DATE)));

 115

 System.out.printf("Station End Date: %s\n",

D_FORMATTER.print((DateTime)meta.get(

MetaDataType.END_DATE)));

 System.out.printf("Station Lat: %s\n",

meta.get(MetaDataType.LATITUDE));

 System.out.printf("Station Lon: %s\n",

meta.get(MetaDataType.LONGITUDE));

 System.out.printf("Station Elevation: %s\n",

meta.get(MetaDataType.ELEVATION));

 System.out.printf("\n --- Station Variables ---\n");

 for (DataType type : var.keySet()) {

 VariableMetaData var_meta = var.get(type);

 System.out.printf("\tVariable: %s\n ", type.getName());

 System.out.printf("\tStart Date: %s\n",

 D_FORMATTER.print(var_meta.getStartDate()));

 System.out.printf("\tEnd Date: %s\n",

 D_FORMATTER.print(var_meta.getEndDate()));

 System.out.printf("\tMissing Percent: %s\n\n",

 N_FORMATTER.format(var_meta.getMissingPercent()));

 }

 System.out.printf("\n --- 2009 Monthly Rainfall ---\n");

 System.out.printf("\tJ\t\tF\t\tM\t\tA\t\tM\t\tJ\n");

 for (float val : precip_data.getDataMatrix(station)[0]) {

 if (val != DataType.OUTSIDE_OF_RANGE) {

 System.out.printf("\t%fin.", val);

 }

 }

 System.out.printf("\n\n--- 2009 Monthly SPI ---\n");

 System.out.printf("\tJ\t\tF\t\tM\t\tA\t\tM\t\tJ\n");

 for (float val : spi_data.getDataMatrix(station)[0]) {

 if (val != DataType.OUTSIDE_OF_RANGE) {

 System.out.printf("\t%f ", val);

 }

 }

 System.out.printf("\n");

 }

 System.out.printf("\n\n --- Impacts for the city of %s in %s County, “+

“%s ---\n",

city.getName(), city.getCounty().getName(),

city.getCounty().getState().name());

 System.out.printf("\tTotal Impacts: %d", impacts.getImpactList().size());

 for (ShadowImpact impact : impacts.getImpactList()) {

 ImpactReportBean the_impact =

drought_impact_query.loadReport(impact.getId(), true);

 System.out.printf("\n\tEffect Beginning: %s",

D_FORMATTER.print(impact.getStart()));

 System.out.printf("\n\tEffect Ending: %s",

D_FORMATTER.print(impact.getEnd()));

 System.out.printf("\n\tEntered: %s",

D_FORMATTER.print(impact.getEntryDate()));

 if (the_impact.getMediaReports().size() > 0) {

 MediaReportBean media =

the_impact.getMediaReports().get(0);

 System.out.printf("\n\tMedia Report Content:\n");

 System.out.printf("\t%s", media.getFullText());

 System.out.printf("\n\tStory Reference: %s",

media.getStoryReference());

 } elseif (the_impact.getUserReports().size() > 0) {

 116

 System.out.printf("\n\tWe do not have permission to “+

“print user report data.");

 }

 }

 System.out.printf("\n\n\n Report runtime: %d seconds",

(System.currentTimeMillis() - start)/1000);

 } catch (Exception e) {

 e.printStackTrace(System.err);

 System.err.printf("Execution halted!\n");

 }

 }

}

A2 – CLIENT PROGRAM OUTPUT

Container created for token: FIRM_BASE

[FIRM (codename Thresher) version 1.0.20080618.1-R]

Total stations in zip code: 23

Total filtered stations in zip code: 4

 --- LINCOLN MUNI AP ---

Network: COOP

Network ID: 254795

Station Start Date: Jan 1, 1948

Station End Date: Jun 30, 2009

Station Lat: 40.831

Station Lon: -96.764

Station Elevation: 1170.0

 --- Station Variables ---

 Variable: Precipitation

 Start Date: Jan 1, 1948

 End Date: Jul 5, 2009

 Missing Percent: 29%

 Variable: High Temperature

 Start Date: Jan 1, 1948

 End Date: Jul 5, 2009

 Missing Percent: 29%

 Variable: Average Relative Humidity

 Start Date: Dec 31, 2003

 End Date: Jul 5, 2009

 Missing Percent: 0%

 Variable: Average Wind Speed

 Start Date: Dec 31, 2003

 End Date: Jul 5, 2009

 Missing Percent: 0%

 Variable: Average Temperature

 Start Date: Jan 1, 1948

 End Date: Jul 5, 2009

 Missing Percent: 29%

 Variable: Low Temperature

 Start Date: Jan 1, 1948

 End Date: Jul 5, 2009

 Missing Percent: 29%

 --- 2009 Monthly Rainfall ---

J F M A M J

0.380000in. 0.640000in. 0.180000in. 1.520000in. 1.170000in. 6.180000in.

--- 2009 Monthly SPI ---

J F M A M J

-0.580000 -0.080000 -1.910000 -0.880000 -1.920000 0.980000

 --- RAYMOND 2NE ---

Network: COOP

Network ID: 257055

Station Start Date: Aug 2, 1942

Station End Date: Jun 30, 2009

Station Lat: 40.974

Station Lon: -96.766

Station Elevation: 1320.0

 117

 --- Station Variables ---

 Variable: Precipitation

 Start Date: Aug 2, 1942

 End Date: Jul 6, 2009

 Missing Percent: 7%

 Variable: High Temperature

 Start Date: Jan 1, 2000

 End Date: Jul 6, 2009

 Missing Percent: 4%

 Variable: Average Temperature

 Start Date: Jan 1, 2000

 End Date: Jul 6, 2009

 Missing Percent: 4%

 Variable: Low Temperature

 Start Date: Jan 1, 2000

 End Date: Jul 6, 2009

 Missing Percent: 4%

 --- 2009 Monthly Rainfall ---

J F M A M J

0.320000in. 0.750000in. 0.160000in. 1.310000in. 1.670000in. 6.130000in.

--- 2009 Monthly SPI ---

J F M A M J

-0.370000 0.200000 -1.840000 -0.820000 -1.500000 0.790000

 --- MALCOLM ---

Network: COOP

Network ID: 255105

Station Start Date: Aug 1, 1942

Station End Date: Jun 30, 2009

Station Lat: 40.908

Station Lon: -96.865

Station Elevation: 1310.0

 --- Station Variables ---

 Variable: Precipitation

 Start Date: Aug 1, 1942

 End Date: Jul 6, 2009

 Missing Percent: 3%

 --- 2009 Monthly Rainfall ---

J F M A M J

0.420000in. 0.570000in. 0.110000in. 1.340000in. 1.100000in. 5.760000in.

--- 2009 Monthly SPI ---

J F M A M J

-0.350000 -0.120000 -1.990000 -0.970000 -2.060000 0.710000

 --- LINCOLN UNIV PWR PLT ---

Network: COOP

Network ID: 254815

Station Start Date: Sep 1, 1955

Station End Date: Mar 31, 2009

Station Lat: 40.823

Station Lon: -96.702

Station Elevation: 1160.0

 --- Station Variables ---

 Variable: Precipitation

 Start Date: Sep 1, 1955

 End Date: Apr 1, 2009

 Missing Percent: 16%

 Variable: High Temperature

 Start Date: Sep 1, 1955

 End Date: Aug 1, 1998

 Missing Percent: 4%

 Variable: Average Temperature

 Start Date: Sep 1, 1955

 End Date: Aug 1, 1998

 Missing Percent: 4%

 Variable: Low Temperature

 118

 Start Date: Sep 1, 1955

 End Date: Aug 1, 1998

 Missing Percent: 3%

 --- 2009 Monthly Rainfall ---

J F M A M J

0.370000in. 0.630000in. 0.180000in.

--- 2009 Monthly SPI ---

J F M A M J

-0.420000 0.010000 -1.500000

--- Impacts for the city of Lincoln in Lancaster County, Nebraska ---

 Total Impacts: 1

 Effect Beginning: May 9, 2009

 Effect Ending: May 9, 2009

 Entered: May 11, 2009

Media Report Content:

 The mayor of Lincoln has asked residents to voluntarily conserve water because other

portions of the state that have some bearing on Lincoln's water supply haven't gotten

enough rain.

Story Reference:

http://www.journalstar.com/articles/2009/05/09/news/local/doc4a03576544749673673380.txt

 Report runtime: 33 seconds

